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 CHAPTER 1 

INTRODUCTION 

 

1.1. Macrocyclic Ligands 

Since the pioneering work of the 1987 Nobel Prize Winners, Charles J. Pedersen, 

Donald J. Cram, and Jeanne-Marie Lehn, macrocyclic ligands have been extensively 

investigated and employed for a wide variety of molecular recognition applications as a 

result of their ability to strongly and selectively bind guest species including: metal and 

organic cations, anions, and neutral molecules [1].  Macrocyclic ligands are defined as 

molecules consisting of three or more donor atoms (O, N, S) in a ring at least nine atoms 

long [1].  Natural macrocycles are involved in several fundamental biological processes 

such as the mechanism of photosynthesis and the transport of oxygen in mammalian 

respiratory systems.   Natural macrocycles were investigated extensively for their unique 

properties, such as enhanced kinetic and thermodynamic stabilities in relation to its 

binding to various guest species.   

The vast majority of studies of macrocyclic ligands have been aimed at 

elucidation of the fundamental aspects of molecular recognition and self-assembly so as 

to determine the biological principles that control their behavior [1].  The biological and 

chemical insight gained from these studies has then been employed for the design and 

synthesis of intelligent artificial systems [2]. The molecular recognition between a host 

macrocycle and guest can be tuned by varying the size, nature, and electronic properties 

of both the host and guest species, many applications based on these complexes have 

already been realized [2–10].  In addition, there is enormous potential for new 

applications of macrocyclic complexes in many diverse fields including: bio- and 

nanotechnology, catalysis, chemical synthesis, environmental cleanup, molecular 

electronics and photonics, and medicine [11–20].   
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The vast majority of macrocyclic studies have been carried out in solution; but 

there is a growing emphasis on the use of mass spectrometry techniques for the study of 

molecular recognition because of it speed, sensitivity, and selectivity.  In particular, mass 

spectrometry investigations are carried out in the gas phase and thus enable investigation 

of the fundamental intrinsic behavior in the absence of complicating solvent interactions.  

An understanding of intrinsic properties will contribute to the development of better 

models to understand molecular recognition and related processes.  

 
1.1.1. 1,4,7,10-tetra-azacyclododecane (ta42C4) and 1,4,7,10,13,16-
hexaazacyclooctadecane (ha18C6) 

 Cyclen (1,4,7,10-tetraazacyclododecane, ta12C4) and Hexacyclen 

(1,4,7,10,13,16-hexaazacyclooctadecane, ha18C6), the aza analogues of 12-crown-4 

(1,4,7,10-tetraoxacyclodecane, 12C4) and 18-crown-6 (1,4,7,10,13,16-

hexaoxacyclooctadecane, 18C6) have been extensively used in many applications. 

Similar to the crown ethers [1], aza-crown ethers are capable of selectively binding 

cations via noncovalent metal-ligand interactions or hydrogen bond interactions [8,21]. 

Crown ethers have been more extensively used as compared to the aza-analogues 

primarily because they are less expensive to make.  In spite of their cost, aza-crown 

ethers find uses in various applications because they are generally more selective in its 

binding due to its ability to bind various guest species and act as a proton acceptor and 

donor.  Transition and heavy metal cations tend to form stable complexes with aza-crown 

ethers, whereas the crown ethers preferentially bind alkali and alkaline earth metal 

cations [1]. 

 Cyclen is used as a building block in the synthesis of magnetic resonance imaging 

(MRI) contrast agents [22]. Cyclen derivatives have also been used in medicinal 

applications including, drug delivery and chelators suitable for diagnosis and tumor 

therapy [5,23].  Cyclen in various derivatized forms has been used in many separations 
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and molecular recognition applications [24,25].  Cyclen has also been used as a model 

system to investigate the synthesis of new materials related to nonlinear optical (NLO) 

properties [26].  All of these applications make use of functionalized cyclen, such that 

very limited thermodynamic information is available for the neutral cyclen ligand and its 

complexes to alkali metal cations in the gas phase.  

Hexacyclen is a hexadentate macrocycle that is able to completely encapsulate the 

alkali metal cation, when compared to cyclen [8,27].  For most transition metal cations, 

ha18C6 forms a 1:1 metal-ligand complex [28–29, 30, 31, 32, 33], but in some cases a 

2:1 complex is formed [34–35].  Hexacyclen also exhibits greater specificity due to its 

ability to act as a proton acceptor or donor, in contrast to 18C6.  Protonated hexacyclen 

has been used to bind various organic and inorganic anions at varying pH [6, 36–44]. In 

addition, it has been shown to be a catalyst of ATP-hydrolysis and to be capable of acting 

as an enzyme mimic for phosphoryl transfer reactions [17,18,45].  Upon functionalization 

of the amine donor atoms of hexacyclen, binding interactions with amino acids, peptides, 

and dopamine have been observed [19,46].  Hexacyclen has also been functionalized with 

hexaacetic acid and has been utilized in layer-by-layer assemblies for water desalination 

[20,47]. To date, very little gas-phase thermochemical and spectroscopic information has 

been reported for hexacyclen and its alkali metal cations complexes. 

 

1.1.2. 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane (da18C6) 

 Diaza-18-crown-6 (1,4,10,13-tetraoxa-7,16-diazacyclooctadecane (da18C6)) is 

analogous to 18-crown-6 (18C6), except that nitrogen donor atoms have replaced two 

oxygen donor atoms.  The properties attributed to the presence of two types of donor 

atoms symmetrically placed in the macrocycle have been investigated using solution 

phase methods [48].  The da18C6 ligand exhibits binding to the alkali and alkaline earth 

metal cations as well as several transitions metal cations, such as Cu+ and Ag+ in 

methanol and acetonitrile solutions [48–50].  The stability of metal cation–da18C6 
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complexes decreases in aqueous solution due to the competition between the metal cation 

binding to da18C6 vs. water molecules, primarily a result of the nitrogen donor atoms 

ability to act as strong proton acceptors.  Diaza-18-crown-6 has been functionalized with 

various groups to investigate its fluorescence behavior [51], the modulation of its two-

photon absorption cross-section by metal cations [52], as a ratiometric probe for the 

selective time-gated luminescence detection of potassium in water [53], and specific 

membrane transport of Ag+ and Cu+ ions through a supported membrane [54].      

 

1.1.3. 1,4,7,10,13,16-hexathiacyclooctadecane (ht18C6) 

Hexathia 18-crown-6 (1,4,7,10,13,16-hexathiacyclooctadecane, ht18C6) is the 

sulfur analogue of 18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane, 18C6). Similar 

to hexacyclen, hexathia 18-crown-6 form stable 1:1 complexes with the transitions metal 

cations [1] but it differs in that it is generally selective for soft metal cations such as Ag+, 

Hg2+, Cu+, and Pd2+ [55,56]. The fundamental processes that govern the complexation of 

the metal cations have been investigated [56–61]. The facilitated transfer of heavy metals 

ion across two immiscible electrolyte solutions have also been investigated using ht18C6 

[62,63]. There has been considerable interest in hexathia 18-crown-6 for the removal of 

heavy metal cations such as Ag+, Hg2+, Au3+, and Au+ [64–68].  In addition, hexathia 18-

crown-6 has been used to model systems for the blue copper protein [57,69,70,] and 

vitamins [71]. 

 

1.2. Alkali Metal Cations 

The alkali metals are a group in the periodic table characterized by having one 

electron in the outermost s-oribital.  Alkali metals are interesting from a practical point-

of-view.  The alkali metal cations (Na+, K+, Rb+, and Cs+) have many applications.  Na+ 

is used as light source [72,73], whereas Na metal is used as a reducing agent of 

transitions metals [74].  Na+ and K+ are both important as they have major biological 
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roles relative to nerve and heart function in animals [75,76].  Na+ and K+ control the 

osmotic pressure of cells; neutralize the negative charges of intracellular anions and 

transferring ions across bio-membranes.  Rb+ and Cs+ don’t have any direct biological 

roles in living systems and both can be toxic [77,78]. In the case of Cs+, the metal cation 

will readily interfere with K+ in animal cell [77,78].  Rb+ and Cs+ do have applications in 

living systems, with Rb+ having been shown to stimulate metabolism [79] and Cs+ has 

been investigated as a therapeutic cancer agent [80].   Rb+ and Cs+ are also used in atomic 

clocks [81], with the seconds being defined in reference to the Cesium 133 atom [82].  

 

1.3. Noncovalent Metal Ligand Interactions 

 Noncovalent interactions play major roles in modern chemistry including; 

condensation and solvation, organization and stabilization of organometallic compounds, 

folding of proteins, specific recognition of substrates, and the transport of ions and 

molecules. Nonconvalent interaction does not involve the sharing of an electron as with 

covalent interactions, or the electrons stayed paired in the reactants and products, and no 

change is observed in the type of chemical bonding in the products and reactants [83].  

Covalent interactions are generally stronger than nonconvalent interaction and are the 

dominant factors that hold molecules together in specific geometries.  Although weak 

compared to covalent interactions, noncovalent interactions contribute to the ability of 

molecules to undergo changes in conformation, which provides specific conditions for 

substances that bind and react with each other.  The different types of noncovalent 

interactions include hydrogen bonding [84–86], ionic interactions [87,88], Van der Waals 

interactions [89], cation-! [90–93], and hydrophobic interactions [89].   

 Noncovalent metal-ligand interactions are of the ionic type.  For the macrocycle 

discussed previously, it has been shown that oxygen donor atoms bind the alkali metal 

cation, where the nitrogen donor atoms bind the transition metal cations [1].  The alkali 

metals are grouped as hard metal cations, which have a high tendency to form 
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noncovalent bonds.  Soft metal cations, such as the transitions metal cations, have a 

higher tendency to form covalent bonds.  Noncovalent interactions are important in 

molecular recognition; the macrocycles and their interactions with metals can be used to 

understand molecular recognition [94].  

 

1.4. Importance of Model System 

 Model systems are important because they allow for a focus on one particular 

aspect of a biological structure, complex, or pathway.  Model systems allow for the 

separation of factors that contribute to stability and reactivity.  For example, macrocycles 

and their metal complexes have been extensively studied in solution, where separating 

out intrinsic and extrinsic binding behavior can be difficult [8–10].   The size of the metal 

cation and the cavity size of the macrocyclic ligand are two principle components that 

contribute to observed selectivity.  In some cases, as with the crown ethers, size of the 

metal cation and size of the macrocycle cavity does not explain observed selectivity [95].  

Armentrout and co-workers investigated alkali metal cation interactions with several 

crown ethers including 1,4,7,10-tetraoxaclododecane (12-crown-4 or 12C4), 1,4,7,10,13-

pentaoxacyclododecane (15-crown-5 or 15C5), and 1,4,7,10,13,16-

hexaoxacyclododecane (18-crown-6 or 18C6) using GIBMS techniques, with 

complementary electronic structure calculations performed by Feller and co-workers [96–

102].  In general, good agreement between the measured and calculated binding energies 

was found.  However, interactions between Rb+ and Cs+ with 12C4 and 15C5 appeared to 

be underestimated in the experiments.  Theoretical analysis of these systems suggested 

that excited conformations may have been accessed in the experiments, but this was 

never proven. Recently in collaboration with Armentrout, the alkali metal cation binding 

to 12C4 and 15C5  was revisited and showed that ground-state species could be accessed 

using an alternative ionization technique, electrospray ionization (ESI), such that accurate 

binding energies for these systems were able to be determined [103,104].  From these 
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studies, observed selectivity could be better understood due to the complementary gas 

phase data.   

 

1.5. Motivation and Systems Investigated  

 The focus of my Ph.D. studies has been on the determination of accurate 

structural and thermochemical information regarding the binding between host 

macrocyclic ligands and metal and organic cations to provide detailed insight into the 

factors that control the selectivity of the complexation process.  These studies involve 

both experimental and theoretical investigations of the structures of these complexes and 

their fragmentation behavior.  Using energy-resolved collision-induced dissociation 

(CID) techniques carried out in a guided ion beam tandem mass spectrometer (GIBMS) 

and theoretical electronic structure calculations, we are able to characterize the various 

binding geometries available to cation-macrocycle complexes and their relative 

stabilities, as well as to accurately determine their absolute binding affinities.  In addition, 

using complementary infrared multiple photon dissociation (IRMPD) action spectroscopy 

experiments, supported by complementary theoretical electronic structure calculations, to 

characterize the IR spectra of the cation-macrocycle complexes and definitively 

determine the structures of the complexes accessed under our experimental conditions. 

Very little gas-phase thermochemical and spectroscopic information has been reported to 

date, we have thus far focused on systematic studies of the interactions between relatively 

simple macrocycles and alkali metal and organic cations.   

 

1.5.1. Alkali Metal Cation Binding Affinities of ta12C4, ha18C6, da18C6, ht18C6 

 In this thesis, the noncovalent interactions between alkali metal cations (Na+, K+, 

Rb+, and Cs+) and ta12C4 and ha18C6, the nitrogen azacrown ether analogues of 12-

crown-4 and 18-crown-6, ht18C6, the sulfur thiacrown ether analogues of 18-crown-6, 

and the mixed donor atom ligand da18C6 are investigated.  Energy-resolved collision-
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induced dissociation (CID) techniques were used in conjunction with theoretical 

electronic structure calculations to characterize the structures, binding interactions, and 

stability of the M+(macrocycle) complexes where the macrocycle is ta12C4, ha18C6, 

ht18C6, or da18C6.  Guided ion beam tandem mass spectrometry techniques (GIBMS) 

were used to characterize the energy dependence of the CID of the M+(macrocycle) 

complexes, which allowed the bond dissociation energies (BDEs) of the complexes to be 

determined.  Density functional theory calculations at the B3LYP/6-31+G*_HW and 

def2/TZVPPD levels of theory were used to determine the structures of all the neutrals 

azacrown ethers and the M+(macrocycle) complexes.  Theoretical BDEs are determined 

from single point energy calculations at the B3LYP and MP2 (full) levels of theory using 

the B3LYP/6-31+G*_HW and def2/TZVPPD optimized geometries. 

 

1.5.2. IRMPD Action Spectroscopy of Alkali Metal Cation – ta12C4 

 The gas phase structures of alkali metal cationized complexes of cyclen (1,4,7,10-

tetra-azacyclododecane) were examined via infrared multiple photon dissociation 

(IRMPD) action spectroscopy and theoretical electronic structure calculations.  

Complexes involving four of the alkali metal cations, Na+, K+, Rb+, and Cs+, are 

examined.  The photodissociation experiments were carried out in a 4.7 T Fourier 

transform ion cyclotron resonance mass spectrometer (FT-ICR MS).  The mass-selected 

alkali metal cation-cyclen complexes were irradiated using a wavelength tunable free 

electron laser (FEL) over the range of wavelengths extending from ~600 to 1600 cm-1.  

Theoretical methods were employed to characterize the structures and relative stabilities 

of isolated cations and aza-crowns as well as the nonconvalently bound complexes 

comprised of these species.  The measured IRMPD action spectra of the M+(cyclen) 

complexes were compared to the theoretical linear IR spectra computed for the various 

stable low-energy conformations of these species to determine the structures accessed in 

the experiments. 



www.manaraa.com

! "!

 

 

 

1.6. References 
!
[1] L.F. Lindoy, The Chemistry of Macrocyclic Ligand Complexes; Cambridge University Press, 

Cambridge, 1989, p. 13. 

[2] R. Delgado, V. Félix, L.M.P. Lima, D.W. Price, Dalton Trans. (2007) 2734. 

[3] M. Kim, J.W. Jeon, J. Suh, J. Biol. Inorg. Chem. 10 (2005) 364. 

[4] C.A. Boswell, X. Sun, W. Niu, G.R. Weisman, E.H. Wong, A.L. Rheingold, C.J. Anderson, J. Med. 

Chem. 47 (2004) 1465. 

[5] T. Chen, X. Wang, Y. He, C. Zhang, Z. Wu, K. Liao, J. Wang, Z. Guo, Inorg. Chem. 48 (2009) 5801. 

[6] E. Kimura, A. Watanabe, M.A. Kodama, J. Am. Chem. Soc. 105 (1983) 2063. 

[7] M.W. Hosseini, J.M. Lehn, M.P. Mertes, Helv. Chim. Acta 66 (1983) 2454.  

[8] R.M. Izatt, K. Pawlak, J.S. Bradshaw, Chem. Rev. 95 (1995) 2529.   

[9] H.K. Frensdorff,  J. Am. Chem. Soc. 93 (1971) 600.  

[10] A. D’Aprano, B. Sesta, J. Phys. Chem. 91 (1987) 2415.   

[11] A. Prokhorov, N.L. Bris, G. Bernard, H. Henri, Synth. Commun. 36 (2006) 3271.  

[12] E. Kinoshita-Kikuta, E. Kinoshita, N. Harada, T. Koike, Anal Biochem. 408 (2011) 34. 

[13] J. Geduhn, T. Walenzyk, B. Koenig, Curr. Org. Synth. 23 (2007) 390. 

[14] H. Kubo, T.N. Player, S. Shinoda, H. Tsukube, H. Nariai, T. Takeuchi, Anal. Chim. Acta 504 (2004) 

137.  

[15] T.Y. Lee, J.  Suh, Pure Appl. Chem. 81 (2009) 255.  

[16] J. Suh, W.S. Chei, Curr. Opin. Chem. Biol. 12 (2008) 207. 

[17] M.W. Hosseini, J.M. Lehn, J. Am. Chem. Soc. 109 (1987) 7047.   
!



www.manaraa.com

! "#!

!
[18] M.W. Hosseini, J.M. Lehn, K.C. Jones, K.E. Plute, K.B. Mertes, M.P. Mertes, J. Am. Chem. Soc. 111 

(1989) 6330.  

[19] M. Kodama, Bull. Chem. Soc. Jpn. 69 (1996) 3179.   

[20] A. El-Hashani, A. Toutianoush, B. Tieke, J. Membr. Sci. 318 (2008) 65.  

[21] R. Kataky, K.E. Matthes, P.E. Nicholson, D. Parker, J. Chem. SOC. PERKIN TRANS. 2 (1990) 1425. 

[22] D.E. Reichert, J.S. Lewis, C.J. Anderson, Coord. Chem. Rev. 184 (1999) 3. 

[23] R. Delgado, V. Félix, L.M.P. Lima, D.W. Price, Dalton Trans. (2007) 2734.     

[24] A. Prokhorov, N.L. Bris, G. Bernard, H. Henri, Synth. Commun. 36 (2006) 3271. 

[25] H. Kubo, T.N. Player, S. Shinoda, H. Tsukube, H. Nariai, T. Takeuchi, Anal. Chim. Acta 504 (2004) 

137. 

[26] Z.J. Li, Z.R. Li, F. Wang, C. Luo, F. Ma, D. Wu, Q. Wang, X. Huang, J. Phys. Chem. A 113 (2009) 

2961. 

[27] M.G.B. Drew, M.A. Santos, Struct. Chem. 4 (1993) 5.  

[28] Y. Yoshikawa, Chem. Lett. (1978) 109. 

[29] D.J. Royer, G.J. Grant, D.G. Van Derveer, M.J. Castillo, Inorg. Chem. 21 (1982) 1902.  

[30] S. Chandrasekhar, D.G. Fortier, A. McAuley, Inorg. Chem. 32 (1992) 1424.  

[31] M.A.A.F.deC.T. Corrondo, V. Félix, M.T. Durate, M.A. Santos, Polyhedron 12 (1993) 931.   

[32] M. Nierlich, J. –M. Sabattie, N. Keller, L. Monique, J.D. Vigner, Acta Cryst. Sect. C 50 (1994) 52. 

[33] X.–H. Bu, S.–L. Lu, R.–H. Zhang, W.–G. Wang, X.–K. Yao, Polyhedron 16 (1997) 3247.    

[34] A. McAuley, T.W. Whitcombe, M.J. Zaworotko, Inorg. Org. 30 (1991) 3513.  

[35] J.E. Barker, Y. Liu, N.D. Martin, T. Ren, J. Am. Chem. Soc. 125 (2003) 13332.  

[36] J. Cullinane, R.I. Gelb, T.N. Margulis, L.J. Zompa, J. Am. Chem. Soc. 104 (1982) 3048.  

[37] E. Kimura, A. Sakonaka, M.A. Kodama, J. Am. Chem. Soc. 104 (1982) 4984.  

[38] E. Kimura, M. Kodama, T. Yatsunami, J. Am. Chem. Soc. 104 (1982) 3182.  

[39] R.I. Gelb, L.M. Schwartz, L. Zompa, Inorg. Chem. 25 (1986) 1527. 
!



www.manaraa.com

! ""!

!
[40] P. Thuery, N. Keller, M. Lance, J.D. Vigner, M. Nierlich, Acta Crystallogr., Sect. C: Cryst. Struct. 

Commun. 51 (1995) 1407. 

[41] C. Bazzicalupi, A. Bencini, A. Bianchi, M. Cecchi, B. Escuder, V. Fusi, E. Garcia-España, C. Giorgi, 

S.V. Luis, G. Maccagni, V. Marcelino, P. Paoletti, B. Valtancoli, J. Am. Chem. Soc. 121 (1999) 6807. 

[42] A.C. Warden, M. Warren, M.T.W. Hearn, L. Spiccia, Inorg. Chem. 43 (2004) 6936.  

[43] A.C. Warden, M. Warren, M.T.W. Hearn, L. Spiccia, New J. Chem. 28 (2004) 1160. 

[44] A.C. Warden, M. Warren, M.T.W. Hearn, L. Spiccia, New J. Chem. 28 (2004)1301.  

[45] M.W. Hosseini, J.M. Lehn, M.P. Mertes, Helv. Chim. Acta 66 (1983) 2454.  

[46] K. Kimura, H. Fujioka, K. Kodama, J. Chem. Soc. Chem. Commun. (1986) 1158.  

[47] K. Hoffmann, B. Tieke, J. Membr. Sci. 341 (2009) 261.    

[48] H.K. Frensdorff,  J. Am. Chem. Soc. 93 (1971) 600. 

[49] A. D’Aprano, B. Sesta, J. Phys. Chem. 91 (1987) 2415.  

[50] B.G. Cox, P. Firman, I. Schneider, H. Schneider, Inorg. Chem. 27 (1998) 4018.  

[51] H. Sulowska, W. Wiczk, J. Mlodzianowski, M. Przyborowska, T. Ossowski, J. Photoch. Photobio. A 

150 (2002) 249.  

[52] A. Jana, A.K. De, D. Goswami, P.K. Bharadwaj, J. Organomet. Chem. 693 (2008) 1186.  

[53] E.A. Weitz, V.C. Pierre, Chem. Comm. 47 (2011) 541.  

[54] A. Gherrou, H. Kerdjoudj, Desalination 151 (2002) 87.  

[55] S. Patai, Supplement E: The Chemsitry of Ehters, Crown Ethers, Hydroxyl Groups and their Sulphur 

Analogue Part (II); John Wiley & Sons, New York, 1980.  

[56] T.E. Jones, LS.W.L. Sokol, D.R. Rorabacher, M.D. Glick, J. Chem. Soc., Chem. Commun. (1979) 

140.  

[57] P.W.R. Corfield, C. Ceccarelli, M.D. Glick, I.W.Y. Moy, L.A. Ochrymowycz, D.B. Rorabacher, J. 

Am. Chem. Soc. 107 (1985) 2399.  
!



www.manaraa.com

! "#!

!
[58] P.J. Blower, J.A. Clarkson, S.C. Rawle, J.R. Hartman Jr., R.E. Wolf, R. Yagbasan, S.G. Bott, S.R. 

Copper, Inorg. Chem. 28 (1989) 4040.  

[59] W.N. Setzer, Y. Tang, G.J. Grant, D.G. VanDerveer, Inorg. Chem. 30 (1991) 3652.  

[60] W.N. Setzer, Y. Tang, G.J. Grant, D.G. VanDerveer, Inorg. Chem. 31 (1992) 1116. 

[61] R. Alberto, W. Nef, A. Smith, T.A. Kaden, M. Neuburger, M. Zehnder, A. Frey, U. Abram, P.A. 

Schubiger, Inorg. Chem. 35 (1996) 3420.  

[62] H. Katano, M. Senda, Anal. Sci. 12 (1996) 683.  

[63] H. Katano, M. Senda, Anal. Sci. 15 (1999) 1179. 

[64] M. Shamsipur, G. Azimi, M. H. Mashhadizadeh, S. S. Madaeni, Anal. Sci. 17 (2001) 491.  

[65] B. Saad, C.C. Chong, A.S.M. Ali, M.F. Bari, I.A. Rahman, N. Mohamad, M.I. Saleh, Anal. Chim. 

Acta 555 (2006) 146.  

[66] A.J. Nelson, J.G. Reynolds, T.F. Baumann, G.A. Fox, Appl. Surf. Sci. 167 (2000) 205.  

[67] A. Gherrou, H. Kerdjoudj, Desalination 144 (2002) 231. 

[68] A. Gherrou, H. Kerdjoudj, R. Molinari, P. Seta, E. Drioli, J. Membr. Sci. 228 (2004) 149. 

[69] L.L. Diaddario, Jr., E.R. Dockal, M.D. Glick, L.A. Ochrymowyez, D.B. Rorabacher, Inorg. Chem. 24 

(1985) 356.  

[70] V.B. Pett, L.L. Diaddario, Jr., E.R. Dockal, P.W. Corfield, C. Ceercarelli, M.D. Glick, L.A. 

Ochrymowyez, D.B. Rorabacher, Inorg. Chem. 22 (1983) 3661.  

[71] R. Shivdas, P.B. Desai, A.K. Srivastava, J. Chem. Eng. Data 49 (2004) 1738.   

[72] J.L. Lindsey, Applied Illumination Engineering; Fairmont Press Inc., Liburn, 1997, p. 112.  

[73] R. Kane, H. Sell, Revolution in Lamps: A Chronicle of 50 Years of Progress; Fairmont Press Inc., 

Liburn, 2001, p. 241.  

[74] N.N. Greenwood, A. Earnshaw, Chemistry of the Elements (2nd ed.); Burrweorth-Heninemann, 

Oxfoxd, 1997.  
!



www.manaraa.com

! "#!

!
[75] M. Winter, WebElements Periodic Table of the Elements | Sodium | Biological Information, 

http://www.webelements.com.  

[76] M. Winter, WebElements Periodic Table of the Elements | Potassium | Biological Information, 

http://www.webelements.com.  

[77] M. Winter, WebElements Periodic Table of the Elements | Rubidium| Biological Information, 

http://www.webelements.com.  

[78] M. Winter, WebElements Periodic Table of the Elements | Cesium | Biological Information, 

http://www.webelements.com.  

[79] H.L. Meltzer, J. Clin. Pharmacol. 31 (1991) 179.  

[80] H.E. Sartori,  Pharmacol. Biochem. Be. 21 (1984) 11. 

[81] Time Service Department—U.S. Navel Obsevatory—Department of the Navy, 

http://tycho.usno.navy.mil/cesium.html.  

[82] The NIST reference on Constants, Units, and Uncertainty, NIST, 

http://physics.nist.gov/cuu/Units/second.html 

[83] P.A. Kollman, Acc. Chem. Res. 10 (1977) 365.  

[84] R. Chidamaram, M. Ramabadham, Physica B, 174 (1991) 300.  

[85] P. Auffinger, F.A. Hays, A. Westhof, P. ShingHo, Proc. Natl. Acad. Sci. USA, 48 (2004) 16789.  

[86] A.S. Borovik, Acc. Chem. Res. 38(1) (2005) 54.  

[87] H. Nicholson, W.J. Becktel, B.W. Mathews, Nature 336 (1998) 651.  

[88] J. Sancho, L. Serrano, A. Fersht, Biochemistry 31 (1992) 2253.   

[89] R. Sutton, B.W. Rockett, P. Swindells, Chemistry for the Life Sciences; Taylor & Francis Inc., New 

York , 2000, p. 28.   

[90] J.C. Ma, D.A. Dougherty, Chem. Rev. 97 (1997) 1303.  

[91] S. Yamada, Y. Morimoto, T. Misono, Tetrahedron Lett. 46 (2005) 5673.  
!



www.manaraa.com

! "#!

!
[92] Y. Inagaki, T.T. Pham, F. Fujiwara, T. Kohno, D.A. Osborne, Y. Igarashi, G. Tigyi, L.A. Parrill, 

Biochem J. 389 (2005) 187.  

[93] W. Zhong, J.P. Gallivan, Y. Zhang, L. Li, H.A. Lester, D.A. Dougherty, Proc. Natl. Acad. Sci. USA 

95 (1998) 12088.  

[94] A.D. Buckingham, A.C. Legon, S.M. Roberts, Principles of Molecular Recognition, Blackie 

Academic, Glasglow, 1993.  

[95] G.W. Gokel, D.M. Goli, C. Minganti, L. Echegoyen, J. Am. Chem. Soc. 105 (1983) 6786.  

[96] D. Ray, D. Feller, M.B. More, E.D. Glendening, P.B. Armentrout, J. Phys. Chem. 100 (1996) 16116. 

[97] M.B. More, D. Ray, P.B. Armentrout, J. Phys. Chem. A 101 (1997) 831.  

[98] M.B. More, D. Ray, P.B. Armentrout, J. Phys. Chem. A 101 (1997) 4254. 

[99] M.B. More, D. Ray, P.B. Armentrout, J. Phys. Chem. A 101 (1997) 7007. 

[100] S.E. Hill, D. Feller, E.D. Glendening, J. Phys. Chem. A. 102 (1998) 3813. 

[101]M.B. More, D. Ray, P.B. Armentrout, J. Am. Chem. Soc. 121 (1999) 417. 

[102] E.D. Glendening, D. Feller, M.A. Thompson, J. Am. Chem. Soc. 116 (1994) 10657. 

[103] P.B. Armentrout, C.A. Austin, M.T. Rodgers, Int. J. Mass Spectrom. 330-332 (2012) 16.  

[104] P.B. Armentrout, C.A. Austin, M.T. Rodgers, J. Phys. Chem. A. dx.doi.org/10.1021/jp4116172. 



www.manaraa.com

! "#!

CHAPTER 2 

Experimental and Theoretical Methods 

 

2.1. General Procedures 

 A schematic diagram of the guided ion beam tandem mass spectrometer is shown 

in Figure 2.1.  Cross sections for collision-induced dissociation (CID) of M+(ligand), 

where M+ = Na+, K+, Rb+, and Cs+, and ligand = ta12C4, ha18C6, da18C6, and ht18C6, 

are measured using a guided ion beam tandem mass spectrometer that has been described 

in detail previously [1]. The M+(ligand) complexes are generated by electrospray 

ionization (ESI). The macrocyclic ligand and alkali metal cation salt are dissolved in a 

90–95%/10–5% by volume MeOH/H2O or ACN/H2O mixture to produce a solution that 

is ~0.2 – 0.5 mM in each species., which was delivered via syringe pump using peek 

tubing to a home built electrospray ionization (ESI) source as describe previously [2,3].  

An ESI voltage between 1.4 and 2.5 kV and flow rates in the range from 0.1 to 2 !L/min 

were employed for the M+(L) complexes. Ionized droplets are transferred into the 

vacuum region via a SS capillary biased at ~20-50 V, with the capillary temperature 

ranging from 70 to 125 °C to depending on solution conditions. Ions are initially focused 

using rf ion funnel based on a design similar to that of Smith and coworkers, [4,5] and 

has been described in detail elsewhere [2]. Ions then enter a hexapole ion guide, where 

thermalization of the ions is achieved through collisions with the background gases.  The 

ions emanating from the hexapole ion guide are then focused, accelerated, and focused 

into a magnetic sector momentum analyzer for mass selection of the reactant ion. The 

mass-selected ions are decelerated to a desired kinetic energy before entering an octopole 

ion beam guide, which traps the ions in the radial direction. Trapping is efficient such 

that the loss of scattered reactant and product ions in the octopole region is virtually 

eliminated. [6,7] The octopole ion beam guide passes through a static gas cell containing 

Xe. Xe pressures in the range from 0.025 to 0.2 mTorr are used for CID. At these 
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pressures, multiple ion-neutral collisions are improbable. Unreacted beam and products 

ions drift to the end of the octopole, are focused into a quadrupole mass filter for mass 

analysis, and subsequently detected with a secondary electron scintillation (Daly) 

detector using standard pulse counting techniques. 

 

2.2. Data Acquisition System 

 The GIBMS is control by a computer equipped with a Pentium 133 MHz 

processor.  A commercial GPIB interface board with 12-bit resolution (Keithley PCI-488) 

and a custom digital I/O board provide the hardware control functions. The GPIB board 

controls the Canberra dual counter timer 2071A (used in ion detection) and a Kepco BOP 

100-IM power supply (used to control the dc voltage applied to the reaction region).  The 

Kepco BOP has two modes with high (0 to ±100 eV) and low (0 to ±10 eV) ranges, such 

that the 12-bit resolution of the GPIB results in a minimum energy step size of 0.002 eV 

below 10 eV and 0.024 eV above 10 eV.  The quardupole mass filter m/z value was set 

by a 16-bit optically isolated DAC contained in the custom digital I/O board, with a 

minimum step size of 0.0153 Da. The two digital outputs used to control the 

electropneumatic valves that direct the neutral reactant gas to the collision gas cell or 

reaction chamber are also contained in the custom digital I/O board connected by solid-

state relays.  The pressure output is read digitally by interfacing the custom digital I/O 

board to the Baratron through an SCSI cable.  The gas flow rates in the source and 

interaction regions and all other lens potentials in the instrument are not automated 

because they do not vary with the ion interaction energy.  Manual control leak valves 

(Granville Philips, model 203) are used to control the collision gas flow rates and a 

custom-built voltage dividers powered by standard dc power supplies provide the lens 

potentials.  

Two 32-bit multithreaded graphical user interface programs, MSCAN and EMP 

(energy, mass, and pressure) are used for data acquisition.  Compaq Vision FORTRAN 
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6.1 A was used to write these two programs.   A lower level device interfaces written in C 

are used to acquire data during experiments.  The quadrupole mass filter was scanned at 

fixed octopole interaction energy and records the intensity of detected ions as a function 

of the mass-to-charge ratio by the MSCAN program.  The octopole interaction energy 

was scanned and records the intensity of the specified reactant and product ions as a 

function of this energy by the EMP program.  A real-time graphical display, I/O 

windows, a control panel, and a color and symbol palette are common features of both 

programs.  User input was required for control of the instrument and to set up 

experiments through the control panel. The control panel also reports details and the 

progress of the current experiment and allows changes to be made in the graphical 

display window during data acquisition. 

 

2.3. Absolute Cross Sections 

 Measured ion intensities are converted to absolute cross sections using Beer’s 

law.  The experimental total reaction cross section, !tot, was determined by the relation, 

                                                                                                  (2.1) 

where IR and IP and are the measured transmitted intensities of the reactant and product 

ions, respectively, n is the gas density, and L was the effective collision gas cell length.  

Individual product cross sections are calculated using the following formula 

                                                                                                   (2.2) 

Equations 2.1 and 2.2 presume that the sum of the transmitted reactant and product ions 

are equal to the incident ion intensity, that is, I0 = Ir + !Ip.  Due to the 4" collection 

characteristics of the octopole, this assumption was valid as long as all significant 

channels are monitored. 

 There are errors in the cross sections associated with the pressure measurements 

and the effective length of the interaction region, leading to ± 20% absolute uncertainties 

in the cross section measurements.  Relative Uncertainties are approximately ± 5%. 
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 Ion kinetics energies in the laboratory frame, Elab, are converted to energies in the 

center of mass frame, ECM, using the formula ECM = Elab m/(m + M), where M and m are 

the masses of the ionic and neutral reactants, respectively.  All energies reported in this 

study are in the center-of-mass frame unless otherwise noted. The absolute zero and 

distribution of ion kinetic energies are determined using the octopole ion guide as a 

retarding potential analyzer as previously described [1].  The nominal laboratory ion 

kinetic energy is the potential difference between the ESI capillary and the interaction 

region (i.e., the dc voltage of the octopole).  In addition, the octopole ion guide serves as 

a highly efficient retarding energy analyzer.  The ion beam intensity, I0, is monitored as 

the dc voltage of the octopole was swept through the ion energy zero, producing a 

retardation curve such as that shown in Figure 2.3.  This figure shows the ion intensity of 

the Rb+(18C6) complex as a function of the laboratory kinetic energy.  Due to the 

trapping efficiency of the octopole, dispersion of low energies ions, the result of space 

charge effects, are virtually eliminated.  Further, because reactions take place in the same 

region as the energy analysis, there was no ambiguity in the interaction determination due 

to contact potential differences.  For the ESI source, the experimental primary ion kinetic 

energy distribution, as determined by the retarding energy analysis, was nearly Gaussian.  

A Gaussian curve fitted to the experimental distribution from the retarding energy 

analysis of Figure 2.3 is shown in Figure 2.4, where the ion beam energy distribution 

was obtained by taking the derivative with respect to energy of the retarding energy 

analysis curve.  The solid line shows a Gaussian curve fitted to the data points. The 

apparent full width at half-maximum (FWHM) from the retardation curve adequately 

describes the width of the Gaussian fit.  For most experiments performed here, the 

distribution of ion kinetic energies was nearly Gaussian with a FWHM typically between 

0.2 and 0.7 eV (lab). The uncertainty in the absolute energy scale is ±0.10 eV (lab). 

 The effect of multiple collisions can significantly influence the shape of CID 

cross sections as observed in previous studies [8].  Predicting the presence and magnitude 
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of these pressure effects are difficult, therefore pressure-dependent studies have been 

performed for all cross sections examined in this study.  Data free from pressure effects 

was obtained by extrapolating to zero reactant pressure, as described previously [8].  

Thus, results reported in these studies are due to single bimolecular encounters. 

 

2.4. Thermochemical Analysis 

 The threshold regions of the measured CID cross sections are modeled using an 

empirical threshold law, Equation 2.3, 

                                                                               (2.3) 

where !0 was an energy independent scaling factor, E is the relative translational energy 

of the reactants, E0 was the threshold for reaction of the ground electronic and ro-

vibrational state, and n was an adjustable parameter that was inversely correlated with the 

efficiency of kinetic to internal energy transfer [8].  The summation was over the ro-

vibrational states of the reactant ions, i, where Ei is the excitation energy, and gi was the 

populations of those states (!gi = 1 ).  The relative reactivity of all ro-vibrational states, 

as reflected by !0 and n, was assumed to be equivalent.  The Beyer-Swinehart algorithm 

[9–11], was used to evaluate the density of the ro-vibrational states and the relative 

populations, gi, are calculated for a Maxwell Boltzmann distribution at 298 K, the 

internal temperature of the reactant ions.  The calculated frequencies are increased and 

decreased by 10% to evaluate the sensitivity of the experimental analysis to the 

deviations from true frequencies [12,13].  One standard deviation of the uncertainty in the 

vibrational energy was assumed from the observed change in the average vibrational 

energy. 

 The time scale for dissociation was within ~10-4 s, which corresponds to the time 

the complex takes to pass from the collision cell to the quadrupole mass filter.  As the 

size of the reactant ion increases, the probability that CID reaction will take place within 

the experimental time scale was small.  In such cases, the apparent thresholds are shifted 
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to higher in energies, resulting in a kinetic shift.  Statistical theories for unimolecular 

dissociation are used in the analysis to quantify and correct for the kinetic shift, more 

specifically Rice-Ramsperger-Kassel-Marcus (RRKM) theory was incorporated into 

equation 2.3, resulting in Equation 2.4, as described in detail elsewhere [14,15]. 

 

                                        (2.4) 

 

! was the experimental time available for dissociation, and k was the unimolecular 

dissociation rate constant.  The term !E is the energy that remains in translation after the 

collision between the reactants.  Thus, E " !E energy transferred to the internal modes of 

the dissociating ion by this collision at a relative translational energy was the energy E.  

The internal energy of the energized molecule after the collision was therefore E + Ei " 

!E.   The unimolecular dissociation rate constant, k, is defined in the usual manner by the 

RRKM theory.  The ro-vibrational frequencies appropriate for the energized molecules 

and the transition states (TSs) leading are needed for equation 2.4.  The TSs are assumed 

to be loose and product-like because the interaction between the metal ions and the 

macrocycle is largely electrostatic, thus the TSs are modeled using the ro-vibrational 

frequencies of the products.  This treatment of the TSs is refered to as the phase space 

limit and assumes the TS occurs at the centrifugal barrier for dissociation as described in 

detail elsewhere [14].  To give optimized values for the parameters !0, E0, and n, 

Equation 2.3 and 2.4 are convoluted with the kinetic and internal energies distributions 

of the reactants and a nonlinear least-squares analysis of the data is preformed.  The range 

of threshold values determined for the zero-pressure-extrapolated data sets for each 

complex, variations associated with uncertainties in the vibrational frequencies, and the 

error in the absolute energy scale, ±0.05 eV (lab) are used to calculate the errors 

associated with the measurement of E0.  For analyses that include the RRKM lifetime 

analysis, the uncertainties in the reported E0(PSL) values also include the effects of 
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increasing and deceasing the time assumed available for dissociation (~ 10-4 s) by a factor 

of 2. 

 Equations 2.3 and 2.4 explicitly include the internal energy of the reactant, Ei.  

The ro-vibrational energy of the reactants was redistributed throughout the reactant upon 

interaction with Xe, therefore all energy available was treated statistically.  The CID 

processes examined here corresponds to simple noncovalent bond cleavage reactions, the 

E0(PSL) values determined from analysis with Equations 2.3 and 2.4 can be equated to 0 

K BDEs [16,17].  Results obtained by this modeling procedure have been verified for 

many systems by comparing values derived from other experimental techniques and ab 

initio calculations [18].   

 

2.5. Conversion from 0 to 298 K 

 To allow comparison to commonly employed experimental conditions, we 

convert the 0 K bond energies determined here to 298 K bond enthalpies and free 

energies.  The enthalpy and entropy conversions are calculated using standard formulas 

(assuming harmonic oscillator and rigid rotor models) and vibrational and rotational 

constants determined for the B3LYP/def2-TZPPD optimized geometries. Enthalpic and 

entropic are determined by ±10% variation in all vibrational frequencies and additionally 

by ±50% variation in the frequencies associated with the M+–donor atom, donor atom = 

N, O, and S, interactions responsible for the binding in these M+(L) complexes. 

 

2.6. FT–ICR MS–FEL Instrument Overview 

 Infrared multiple photon dissociation (IRMPD) action spectroscopy experiments 

are performed using a Fourier transform ion cyclotron resonance mass spectrometer 

(FTICR MS) coupled to the free electron laser (FEL), Figure 2.4.  
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2.6.1. Free Electron Laser 

 An electron gun is used to generate electrons, which are accelerated in a linear 

accelerator to relativistic speeds and injected into an undulator.  The oscillating trajectory 

of the electron beam in the magnetic field results in the irradiation of the infrared beam.  

The light generated was captured in an optical cavity where freshly injected electrons are 

allowed to interact with the circulating light pulses to generate stimulated emission.  FEL 

resonance condition was controlled by the wavelength of the stimulated radiation.  The 

magnetic field strength in the undulator dictates the deviation from the straight path of the 

electron beam.  Higher magnetic field induces greater electron deviation from the straight 

path, resulting in a longer resonance wavelength.   

The output wavelength of the FEL depends on the strength of the magnetic field.  

Adjustment of the gap between the two arrays of magnets forming the undulator allows 

the strength of the magnetic field to be varied, and the wavelength of the irradiation to be 

tuned.   The FEL has been described in detail elsewhere [19–21]. 

 

2.6.2. Fourier Transform Ion Cyclotron Resonance Mass Spectrometer 

 IRMPD action spectra of four M+(cyclen) complexes were measured using 4.7 T 

Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) coupled to 

the free electron laser (FEL) that was housed at the FOM Institute for Plasma Physics, 

Rijnhuizen.  The M+(cyclen) complexes, where M+ = Na+, K+, Rb+, and Cs+, were formed 

by electrospray ionization (ESI) using a Micromass “Z-spray” source and solutions 

containing 1mM of the corresponding alkali metal hydroxide salt and 1mM of cyclen in 

an approximately 85–90%:15–10% CH3CN:H2O mixture.  A solution flow rate of 10 

µL/min was used and the electrospray needle was held at a voltage in the range between 

2.0 and 2.8 kV.  Ions emanating from the source were focused into a hexapole ion trap 

and accumulated for several seconds before being injected into the ICR cell via a quad 

bender and radiofrequency (rf) octopole ion guide through electrostatic switching of the 
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dc bias on the octopole.  This dc bias switching method allows ions to be captured in the 

ICR cell in the absence of a gas pulse, thus avoiding collisional heating of the ions as 

described in detail elsewhere [20].  Isolation of the precursor ions was achieved using 

stored waveform inverse Fourier transform (SWIFT) techniques prior to irradiation by 

the FEL at pulse energies of ~50 mJ per macropulse of 5 µs duration at a repetition rate 

of 10 Hz.  The irradiation time was varied between 2 and 5 seconds for the complexes 

investigated here due to the number of photos required to effect efficient dissociation of 

the M+(cyclen) complexes varies inversely with the size of the alkali metal cation.  

Therefore, the interaction period corresponds to 20 to 50 macropulses over the 

wavelength region extending from 16.7 µm (600 cm-1) to 6.3 µm (1600 cm-1). 

 The IRMPD yield for each complex was determined using Equation 2.5, 

                                  IRMPD yield = IM+/(IM+(cyclen) + IM+)                                            (2.5) 

where the M+ fragment ion intensity (IM+) after laser irradiation was divided by the total 

ion intensity (IM+(cyclen) + IM+).  The IRMPD yield was not corrected for variations in the 

laser power as a function of the wavelength of the FEL because the uncorrected spectra 

provide a better match to the relative intensities of the linear IR spectra predicted. 

 

2.7. Theoretical Calculations  

 Molecular dynamics simulated annealing procedures and density functional 

theory calculations are performed using Hyperchem [22] and the Gaussian 03 and 09 

suite of programs [ 23 , 24 ], respectively, to obtain model structures, vibrational 

frequencies, rotational constants, and energetics for the neutral ligand and M+(ligand) 

complexes.  These calculations also provide theoretical estimates of the bond dissociation 

energies for comparison to experimentally determined values investigated here.  The first 

stage of calculations involved a simulated annealing process to generate potential low-

energy candidate structures for the neutral ligand using Hyperchem.  A three phase 

annealing process was used, with each cycle beginning and ending at 0 K, lasting for 0.8 
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ps, and achieving a simulation temperature of 1000 K.  Heating and cooling times for 

each cycle were 0.3 ps, allowing the neutral ligand to sample conformational space for 

0.2 ps at the simulation temperature.  In some cases, the lowest energy conformer found 

during the first stage of simulated was subjected to a second stage at 298 K.  The 15 

lowest energy structures determined in the annealing process were chosen for higher-

level optimization at 1000 K.  When a second stage annealing was used, the 15 most 

stable structures found from simulated annealing at 298 K were also chosen for higher-

level optimization, for a total of 30 conformations of neutral ligand. 

 Geometry optimizations of neutral ligand and the M+(ligand) complexes were 

performed using the def2 triple zeta valence basis sets of Rappoport and Furche, def2–

TZVPPD, which include polarization and diffuse functions, and use an ECP for the 

rubidium and cesium atoms developed by Leininger et al  [25,26].  The def2-TZVPPD 

basis set is a balanced basis set on all atoms at the triple-zeta level.  All structures were 

optimized using density functional theory with the B3LYP functional.  In addition to the 

def2-TZVPPD basis set, geometry optimizations were also preformed using 6-

31+G*_HW.  HW indicates the ECP and valence basis sets of Hay and Wadt were used 

to describe the complexes to Rb+ and Cs+ [27], while the 6-31+G* basis sets were used 

for the C, N, Na+, and K+, and H atoms.  A single polarization (d) function was added to 

the Hay-Wadt valence basis set for Rb and Cs, with exponents of 0.24 and 0.19, 

respectively, as recommended by Glendening et al. [28].  The def2-TZVPPD basis set, 

the ECP and valence basis sets of Hay and Wadt were obtained from the EMSL basis set 

exchange [29,30].  In cases where the B3LYP/6-31+G* frequencies are used to model the 

data, the vibrational frequencies are scaled by 0.9804 [31] whereas no scale was used for 

the B3LYP/def2-TZVPPD frequencies.  Theoretical linear IR spectra were generated 

using the calculated vibrational frequencies (scaled by a factor of 0.9704) and IR 

intensities at the B3LYP/def2-TZVPPD level of theory.  For comparison to the measured 
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IRMPD action spectra, the theoretical linear IR spectra were broadened using a 20 cm-1 

full width at half maximum (FWHM) Gaussian line shape. 

Single point energy calculations were performed at the B3LYP and MP2(full) 

levels of theory using 6-311+G(2d,2p)_HW and def2-TZVPPD basis sets and the 

B3LYP/6-31+G*_HW and B3LYP/def2-TZVPPD optimized geometries, respectively.  

To obtain accurate BDEs, zero point energy (ZPE) corrections scaled by 0.98 were 

applied and basis set superposition errors (BSSE) were subtracted from the computed 

BDEs in the full counterpoise correction [32,33].  Results of the single point energy 

calculations will be compared to experimentally determined BDEs.  The polarizabilities 

of the stable low-energy conformers of the neutral ligand were calculated at the 

PBE0/def2-TZVPPD level of theory using the B3LYP/def2-TZVPPD optimized 

geometries.  In addition, the polarizabilties for the stable low-energy conformers of the 

neutral ligand were calculated at the PBE0/6-311+G(2d,2p) level of theory using the 

B3LYP/6-31+G*_HW optimized geometries.  This level of theory has been shown to 

accurately reproduce experimental polarizabilities [34].   
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2.9. Figure Captions 

Figure 2.1. Schematic diagram of the guided ion beam tandem mass spectrometer. 
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Figure 2.2. Retarding potential analysis of the Rb+(18C6) complex ion beam as a function 
of the laboratory ion kinetic energy. 

 

Figure 2.3. Kinetic energy distribution of the Rb+(18C6) complex ion beam. 

 
Figure 2.4 Schematic diagram of the Fourier transform ion cyclotron resonance mass 
spectrometer coupled to the FELIX free electron laser. 
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CHAPTER 3 
Alkali Metal Cation – Cyclen: Effects of Alkali Metal Cation Size on the Structure 

and Binding Energies 

Portions of this chapter were reprinted with permission from Austin, C.A., Chen, Y., and 

Rodgers M.T. Alkali Metal Cation – ta12C4: Effects of Alkali Metal Cation Size on the 

Structure and Binding Energies. Int. J. Mass Spectrom. 330-332 (2012) 27. Copyright 

2012 Elsevier B.V.  

 

3.1. Introduction  

 Cyclen (1,4,7,10-tetraazacyclododecane (ta12C4)) is a macrocycle and the aza 

analogue of 12-crown-4 (1,4,7,10-tetraoxacyclododecane (12C4)).  The structure of 

ta12C4 along with its measured [1,2] and calculated dipole moment and polarizability are 

shown in Figure 3.1. Alkali metal cation-ta12C4 complexes are interesting from a 

practical point of view. Several studies using both experimental and theoretical methods 

have examined the fundamental interactions between ions and neutral ta12C4 based 

molecules in solution [3-4].  Rode and Hannongbua studied the neutral and complexed 

forms of ta12C4 in solution using experimental and theoretical methods [ 5 -10 ]. 

Separating out intrinsic properties from those that can be attributed to the local 

environment, in this case solution, is challenging. One way to study the intrinsic 

properties of the binding is to study these systems in the gas phase.   

There have been fewer experimental studies of ions and neutral ta12C4 in the gas 

phase. Brodbelt and co-workers examined alkali metal cation selectivity and measured 

the gas phase basicities of polyamine complexes using H/D exchange and the bracketing 

method, respectively [11,12]. In their studies, Li+ and Na+ were the only alkali metal 

cations investigated. However, there is a lack of quantitative information relating the 

strength of binding to the complete alkali metal cation series.  
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The purpose of this study was to probe the nature of the binding interactions in 

alkali metal cation-ta12C4 complexes and provide accurate binding energies for the 

series of alkali metal cations including Na+, K+, Rb+, and Cs+. Results for the M+(ta12C4) 

complexes were compared to the analogous M+(12C4) complexes to elucidate the 

influence of the donor atoms (N versus O) on the nature and strength of binding [13–18].  

 

3.2. Collision-Induced Dissociation Experiments  

 Cross sections for collision-induced dissociation (CID) of four M+(ta12C4) 

complexes, where M+ = Na+, K+, Rb+, and Cs+, were measured using a guided ion beam 

tandem mass spectrometer that was described in detail Chapter 2. The M+(ta12C4) 

complexes were generated by electrospray ionization (ESI) [19].  Thermochemical 

analyses of the experimental results are explicitly discussed in Chapter 2. 

 

3.3. Theoretical Calculations  

To obtain model structures, vibrational frequencies, rotational constants, and 

energetics for the neutral ta12C4 ligand and for the M+(ta12C4) complexes, molecular 

dynamics simulated annealing procedures and density functional theory calculations were 

performed using Hyperchem [ 20 ] and the Gaussian 03 suite of programs [ 21 ], 

respectively, and is describe in detail in Chapter 2.   

Initial candidate structures for the M+(ta12C4) complexes were generated using 

four of the low-energy neutral ta12C4 structures; those that were expected to provide the 

most favorable geometries for interaction with the alkali metal cation.  The alkali metal 

cation was placed in various positions to exhaustively probe the range of geometries that 

allow interaction with one, two, three, or all four of the nitrogen donor atoms.  Also 

included as an initial candidate structure for the M+(ta12C4) complexes were structures 

analogous to the previously published ground-state conformations of the M+(12C4) 

complexes [13–18]. 
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Vibrational analyses of the geometry-optimized structures were performed to 

determine the vibrational frequencies for the neutral ta12C4 ligand and M+(ta12C4) 

complexes. Single point energy calculations were performed at the B3LYP and MP2(full) 

levels of theory using the 6-311+G(2d,2p) and def2-TZVPPD basis sets and the 

B3LYP/6-31+G* and the B3LYP/def2-TZVPPD optimized geometries, respectively.  To 

obtain accurate BDEs, zero point energy (ZPE) corrections being scaled by 0.9804 were 

applied and basis set superposition errors (BSSE) were subtracted from the computed 

dissociation energies in the full counterpoise correction [22,23]. The polarizabilties of the 

stable low-energy conformers of ta12C4 were calculated at the PBE0/def2-TZVPPD 

level of theory using the B3LYP/def2-TZVPPD optimized geometries.  

 

3.4. Results  

3.4.1. Collision-Induced Dissociation Experiments 

Cross sections were measured for the interaction of Xe with four M+(ta12C4) 

complexes, where M+ = Na+, K+, Rb+, and Cs+.  Figure 3.2a shows representative data 

for the Na+(ta12C4) complex.  The complexes to K+, Rb+, and Cs+ exhibit similar relative 

behavior, and are provided as Figure 3.3a-c.  In all cases, M+ is the only ionic product 

observed corresponding to endothermic loss of the intact ta12C4 ligand in the CID 

reactions 3.1. 

 

            M+(ta12C4)  +  Xe  !  M+  +  ta12C4  +  Xe       (3.1) 

 

3.4.2. Threshold Analysis. 

The model of Equation 2.4 was used to analyze the thresholds for CID reactions 

3.1 in four M+(ta12C4) systems.  The results of these analyses are provided in Table 3.1. 

A representative analysis of the Na+(ta12C4) complex is shown in Figure 3.2b.  An 

analogous set of figures for the complexes to K+, Rb+, and Cs+ are provided as Figure 
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3.3d-f.  In all cases, the experimental cross sections for CID reactions 3.1 are accurately 

reproduced using a loose PSL TS model [24].  Previous work has shown that this model 

provides the most accurate assessment of the kinetic shifts for CID processes for 

noncovalently bound metal-ligand complexes.  Good reproduction of the data is obtained 

over energy ranges exceeding 4.5 eV and cross section magnitudes of at least a factor of 

100 for the complexes to Na+ and K+, and 50 for the complexes to Rb+ and Cs+.  Table 

3.1 also includes threshold values, E0, obtained without including the RRKM lifetime 

analysis.  The difference between these values and the E0(PSL) values provides a 

measure of the kinetic shifts for these systems, which increase from 0.42 eV for the 

Cs+(ta12C4) complex to 2.20 eV for the Na+(ta12C4) complex.  All of the M+(ta12C4) 

complexes possess the same number of vibrational modes, the observed kinetic shifts 

directly correlate with the measured M+–ta12C4 BDE as observed (Table 3.1).  

 The entropy of activation, !S†, is a measure of the looseness of the TS, but also 

depends on the threshold energy.  The !S†(PSL) values for these systems at 1000 K 

exhibit modest variation, as expected on the basis of the similarity of these systems, and 

vary between 57 and 72 J K-1 mol-1.  The !S†(PSL) values decrease with increasing size 

of the alkali metal in accord with the decrease in the threshold energy.  These entropies of 

activation compare favorably to those previously determined for a wide variety of 

noncovalently bound complexes that dissociate via simple noncovalent bond cleavage 

[13–16, 18, 19, 25–31]. 

  

3.4.3. Theoretical Results  

Theoretical structures were calculated for the ground-state and stable low-energy 

structures of ta12C4 and the M+(ta12C4) complexes as described in the Theoretical 

Calculations in Chapter 2.  M+–ta12C4 BDEs calculated at the B3LYP and MP2(full) 

levels of theory using the def2-TZVPPD basis set and the B3LYP/def2-TZVPPD 

optimized geometries are summarized in Table 3.2.  Also included are values calculated 
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at the B3LYP and MP2(full) levels of theory using the B3LYP/6-311+G(2d,2p) basis set 

and the B3LYP/6-31+G* optimized geometries.  ZPE and BSSE corrections were also 

included in the computed BDEs.  

 

3.4.3.1. Neutral ta12C4  

The B3LYP/def2-TZVPPD optimized structures of the five low energy 

conformers of ta12C4 along with their calculated dipole moments and molecular 

polarizabilities are shown Figure 3.1.  The nomenclature employed to describe these 

structures is taken from the Bosnich et al, where the (+) and (-) describe the positions of 

the amine hydrogen atoms as lying above (+) or below (-) the plane of the ring [32]. 

Energetics computed using the B3LYP/def2-TZVPPD level of theory were found to be 

the most reliable.  Therefore, the following discussion will focus on the geometries and 

energetics calculated at the B3LYP/def2-TZVPPD level of theory, unless otherwise 

noted.  Due to the size of the alkali metal cations investigated, the plane created by the 

donor atoms is slightly distorted, but the position of the amine hydrogen atoms is 

consistent with this nomenclature. Five distinct stable low-energy geometries were found 

for the neutral ta12C4 ligand. The ground-state conformer is of C1+++– symmetry and 

surprisingly exhibits a relatively large dipole moment, 1.27 D. Three of the nitrogen 

atoms are oriented towards the cavity of the ring while one nitrogen atom is oriented 

down and away from the cavity. This is due to the amine hydrogen interacting with the 

adjacent nitrogen donor atom.  This conformation gains additional stabilization via a N–

H"""N hydrogen-bonding interaction. The next most stable conformer is the Cs+++–, 

which is calculated to lie 8.8 kJ/mol higher in energy.  In the Cs+++– structure, the 

calculated dipole moment is 2.56 D, three of the nitrogen atoms lie in the same plane with 

one N donor atom below the plane leading to the large dipole moment.  In the *C2+–+– 

and C2+–+– structures the local dipoles are anti-aligned and oriented towards the center 

of the cavity, leading to cancelation of the local dipole and no overall dipole moment due 
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to symmetry, which is calculated to lie 19.4 and 41.6 kJ/mol, respectively.  The *C2+–+– 

conformer has been reported as the crystal structure of ta12C4 trihydrate [33].  The *C2+–

+– conformer was also previously reported as the ground-state structure by Bultinck et al. 

[34].  Surprisingly, calculations performed here find that the *C2+–+– conformation lies 

19.4 kJ/mol higher in energy than the ground-state conformer.  The C2V++++ structure 

lies 44.5 kJ/mol higher in energy, and the nitrogen donor atoms are all aligned in the 

same plane leading to a calculated dipole moment of 0.26 D.  For both the C2+–+– and 

the C2V++++ conformations imaginary frequencies are encountered.  In both cases, the 

imaginary frequencies arise from ring breathing motions where the amino hydrogens 

move back and forth towards the center of the cavity.  Therefore, the stabilities of these 

conformations are underestimated. The PBE0/def2-TZVPPD computed polarizabilities of 

the stable conformers of ta12C4 exhibit only modest variation as expected and lie 

between 20.10 and 20.61 Å3 (Figure 3.1).  At the B3LYP/6-31+G* level of theory results 

are highly parallel, but the Cs+++– conformer is found to be less stable then the 

B3LYP/def2-TZVPPD results.  The next most stable conformer at the B3LYP/6-31+G* 

level of theory is the *C2+–+– conformer calculated to lie 19.1 kJ/mol higher in energy, 

while the Cs+++– is calculated to lie 25.2 kJ/mol higher in energy. 

 

3.4.3.2. M+(ta12C4)  

Optimized geometries of the ground-state and low-energy structures of the 

Na+(ta12C4) complex at the B3LYP/def2-TZVPPD are provided in Figure 3.4. Similar 

conformations were found for the complexes to the other alkali metal cations and are 

provided Figures 3.5-3.7.  

As can be seen in Figure 3.4, for the Na+(ta12C4) complex, the C4++++ 

conformation where all 4 nitrogen donor atoms are oriented toward the sodium cation is 

the ground-state conformation.  As indicated earlier, the (++++) indicates that the amine 

hydrogen atoms are all located above the plane of the ring.  In this conformation the local 
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dipoles of the 4 amino groups are oriented toward the metal cation. The analogous 

conformations are also observed as the ground-state conformations of the other alkali 

metal cations investigated (Figures 3.5-3.7).  The cavity of ta12C4 is too small to 

accommodate the metal cation as seen by the metal cation sitting above the ring.  The 

four alkali metal cation metal-nitrogen bond distances are equal in all complexes and 

increase with the size of the alkali metal cation from 2.434 Å for Na+ to 3.190Å for Cs+.  

The longer M+–N bond distances lead to concomitant decreases in the "NM+N bond 

angles from 76.4 to 57.7 ° for the complexes to Na+ and Cs+.  The structure of the ta12C4 

ligand is very similar in all complexes as can be seen by the small differences in the 

"CNCC and "NCCN dihedral angles, which vary from -161.4 to -160.5 ° and 61.1 to 

64.3 °, respectively (Figures 3.5-3.7).  

The C2v++++ conformation of Na+(ta12C4) lies 21.7 kJ/mol above the ground-

state conformation.  In this conformation the alkali metal cation-nitrogen distances are 

not equal, and the "NCCN dihedral angles alternate between positive and negative 

values leading to the C2v symmetry.  For the complexes of ta12C4 to the other alkali 

metal cations, the Cs+++– is the next most stable conformer lying 26.1, 24.1, and 23.4 

kJ/mol above the ground-state conformer for the complexes to K+, Rb+, and Cs+, 

respectively.  In the Cs+++– conformation, one of the amino groups is further away from 

the metal cation than the other three, but the local dipole for this amino group is still 

oriented towards the metal cation, suggesting that the binding to this donor atom is 

weaker than to the other three nitrogen atoms.  Another structure with C2V symmetry was 

also found (+–+–), but lies 52.1 kJ/mol higher in energy.  The variation in the relative 

Gibbs free energies of the various conformations of the M+(ta12C4) complexes at 298 K 

as a function of size of alkali metal cation is provided as Figure 3.8. 
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3.5. Discussion  

3.5.1. Comparison of Theory and Experiment 

The M+–ta12C4 BDEs at 0 K measured here by guided ion beam mass tandem 

spectrometry techniques are summarized in Table 3.2.  Also listed in Table 3.2 are the 

M+–ta12C4 BDEs calculated at the B3LYP and MP2(full) levels of theory using 6-

311+G(2d,dp)_HW and def2-TZVPPD basis sets, including independent ZPE and BSSE 

corrections.  The agreement between the calculated and measured BDEs is illustrated in 

Figure 3.9.  As can be seen in the figure, all four levels of theory do a reasonably good 

job of describing the energetics of binding in these systems.  Overall, the B3LYP/def2-

TZVPPD results exhibit the best agreement with the measured values.  The mean 

absolute deviation (MAD) between theory and experiment is 8.8 ± 4.4 kJ/mol. The MAD 

is only slightly larger than the average experimental uncertainty (AEU) in these values, 

7.4 ± 3.1 kJ/mol.  The 6-311+G(2d,dp)_HW basis set does not perform quite as well.  

The MAD between B3LYP/6-311+G(2d,dp)_HW theory and experiment is 14.3 ± 7.8 

kJ/mol, almost double the AEU in these values.  In contrast, the agreement between 

MP2(full) theory and experiment is much less sensitive to the basis set used.  The MAD 

is 10.6 ± 6.4 kJ/mol when the def2-TZVPPD basis set is used and 10.5 ± 9.2 kJ/mol when 

the 6-311+G(2d,dp)_HW basis set is used.  

Based on comparisons between theory and experiment, it appears that MP2(full) 

theory describes the binding in the Na+(ta12C4) complex most effectively, while B3LYP 

theory performs slightly better than MP2(full) for the larger alkali metal cations, K+–Cs+.  

It is also clear that the Hay–Wadt ECP does not perform as well as the def2-TZVPPD 

ECP for Cs+, and underestimates the strength of binding.  Similar behavior has been 

found for Rb+ and Cs+ interacting with a wide variety ligands [35, 36]. 
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3.5.2. Trends in the Binding of Alkali Metal Cations to ta12C4 

The experimental and calculated M+#ta12C4 BDEs at 0 K are summarized in 

Table 3.2 and shown pictorially in Figure 3.10.  The M+#ta12C4 BDEs are found to 

decrease monotonically as the size of the alkali metal cation increases from Na+ to Cs+.  

This is the expected trend for binding based primarily on electrostatic (ion-dipole and 

ion-induced dipole) interactions, because the increasing size of the alkali metal cation 

[37] leads to longer metal-ligand bond distances.  The alkali metal cations have s0 

electron configurations such that their electron densities are spherically symmetric.  

Therefore, the metal-ligand bond distance is primarily determined by the size of the alkali 

metal cation. The smaller cations lead to shorter metal-ligand bond distances and stronger 

electrostatic interactions.  

 

3.5.3. Comparison with 12-crown-4 

In a series of independent and collaborative studies Armentrout, Feller, 

Glendening and coworkers investigated the structures and determined binding energies of 

complexes of alkali metal cations to 12C4 using electronic structure and TCID methods 

[13–17, 38].  The M+(12C4) systems have been recently revisited and re-measured the 

Rb+(12C4) and Cs+(12C4) BDEs using the same experimental methods employed here 

because excited conformers were accessed in that work.  In addition, earlier data was also 

reinterpreted and theoretical electronic structure calculations using the same four levels 

of theory examined here for all four alkali metal cation–12C4 complexes were preformed 

[18].  By comparing the results of these studies to current work, insight into the binding 

specificity of these complexes as a function of the nature of the donor atoms in the 

macrocyclic ring, N vs O, can be gained.  Based on the gas basicities of these two 

ligands, 1004 kJ/mol for ta12C4 and 890.5 kJ/mol [39] for 12C4, one would expect 

harder metal cations to bind more strongly to ta12C4.  Indeed this is the observed trend as 

can be seen in Figure 3.11.  Preferential binding to ta12C4 is observed for the Na+ cation 
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as compared to 12C4.  All of the other alkali metal cations examined, K+, Rb+, and Cs+, 

bind slightly more strongly to 12C4 then to ta12C4.  Both B3LYP and MP2(full) theories 

also suggest that ta12C4 binds the harder alkali metal cations more strongly than 12C4, 

but that this preference should also hold true for K+.  As a result of its preference over 

12C4 for smaller, harder alkali metal cations, ta12C4 will likely prove more useful for 

selective binding to most transition metal cations. 

 

3.6. Conclusion   

The kinetic energy dependence of the collision-induced dissociation of four 

M+(ta12C4) complexes where M+ = Na+, K+, Rb+, and Cs+ with Xe, was examined in a 

guided ion beam tandem mass spectrometer. Only simple CID leading to loss of the intact 

ta12C4 ligand is observed for all four complexes.  Thresholds for these CID reactions 

were determined after careful consideration of the effects of the kinetic and internal 

energy distributions of the reactants, multiple collisions with Xe, and the lifetime of the 

activated M+(ta12C4) complexes using a loose PSL TS model.  Molecular parameters 

needed for the analysis of experimental data as well as structures and theoretical 

estimates for the M+–ta12C4 BDEs are obtained from Theoretical calculations preformed 

at the  B3LYP/6-311+G(2d,2p)//B3LYP/6-31+G*, B3LYP/def2-TZVPPD//B3LYP/def2-

TZVPPD, MP2(full)/6-311+G(2d,2p)//B3LYP/6-31+G*, and MP2(full)/def2-

TZVPPD//B3LYP/def2-TZVPPD levels of theory. Reasonably good agreement is found 

for all levels of theory, but is best for the B3LYP/def2-TZVPPD calculated values. 

Trends in the measured and calculated BDEs suggest that binding is based primarily on 

electrostatic interactions.  The structures of the M+(ta12C4) complexes are very similar to 

those determined for the analogous M+(12C4) complexes with only minor variations 

arising from the presence of the amino hydrogen atoms.  Ta12C4 binds Na+ more 

strongly than 12C4.  In contrast, binding to K+, Rb+, and Cs+ is slightly stronger to 12C4 
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than ta12C4.  These results suggest that the N donor atoms of ta12C4 are more selective 

for hard metal cations whereas 12C4 is more selective for soft metal cations. 
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Table 3.1. Fitting Parameters of Equation 2.4, Threshold Dissociation Energies at 0 K, 
and Entropies of Activation at 1000 K of M+(cyclen) Complexesa 
 

aPresent results, uncertainties are listed in parentheses. bAverage values for loose PSL TS. 
cNo RRKM analysis. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M+ !0
b nb E0

 c
 

(eV) 
E0(PSL) b 

(eV) 
Kinetic Shift 

(eV) 
!S†(PSL) b        

(J mol-1 K-1) 

Na+ 75.3 (5.5) 0.9 (0.1) 5.11 (0.07) 2.91 (0.12) 2.20 79 (2) 

K+ 18.3 (2.3) 1.4 (0.1) 2.63 (0.07) 1.83 (0.08) 0.80 70 (2) 

Rb+ 10.8 (1.8) 1.2 (0.1) 2.07 (0.06) 1.52(0.05) 0.55 68 (2) 

Cs+ 17.9 (1.3) 1.3 (0.1) 1.78 (0.05) 1.36 (0.06) 0.42 63 (2) 
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Table 3.2. Bond Dissociation Enthalpies of M+(cyclen) Complexes at 0 K in kJ/mola 

 B3LYPb   MP2c  M+  
TCID De D0

d D0,BSSE
d,e De D0

d D0,BSSE
d,e 

Na+ 280.8 (11.5) 307.1 294.5 292.8 317.9 305.3 282.4 

  311.2 298.1 292.6 309.7 296.5 277.6 

K+ 176.4 (7.8) 200.9 191.2 188.3 223.1 213.4 192.1 

  206.3 196.5 194.5 217.4 207.5 197.2 

Rb+ 146.7 (4.6) 164.6 156.0 155.4 203.0 194.4 161.4 

  152.5 143.5 142.1 176.6 167.6 144.5 

Cs+ 131.3 (5.6) 141.9 134.2 134.0 170.0 162.3 141.5 

  118.4 110.5 108.8 145.2 137.3 115.7 

MADf 7.4 (3.1) g   8.8 (4.4)   10.6 (6.4) 

    14.3 (7.8)   10.5 (9.2) 
aPresent results, uncertainties are listed in parentheses. bCalculated at B3LYP/def2-
TZVPPD and B3LYP/6-311+G(2d,2p)_HW level of theory. cCalculated at 
MP2(full)/def2-TZVPPD and MP2(full)/6-311+G(2d,2p)_HW level of theory using 
B3LYP optimized geometries. dIncluding ZPE corrections with the B3LYP/6-31+G* and 
B3LYP/def2-TZVPPD frequencies scaled by a factor of 0.9804. eAlso includes BSSE 
corrections. fMean absolute deviation. gAverage experimental uncertainty. 
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3.8. Figure Captions 

Figure 3.1. Structure of cyclen (1,4,7,10-tetraazacyclododecane, ta12C4).  B3LYP/def2-

TZVPPD optimized structures for low-energy conformations of ta12C4.  Relative 

energies determined at the B3LYP/def2-TZVPPD level of theory are shown.  The 

PBE0/def-TZVPPD calculated polarizabilities (!) are also shown along with the 

calculated dipole moments (µ). 

 

Figure 3.2. Cross section for collision-induced dissociation of Na+(ta12C4) with Xe as a 

function of kinetic energy in the center-of-mass frame (lower x-axis) and the laboratory 

frame (upper x-axis).  Data are shown for a Xe pressure of ~0.2 mTorr, part a.  Zero-

pressure extrapolated cross section for collision-induced dissociation of the Na+(ta12C4) 

complex with Xe in the threshold region as a function of kinetic energy in the center-of-

mass frame (lower x-axis) and the laboratory frame (upper x-axis).  The solid lines show 

the best fit to the data using the model of equation 2.4 convoluted over the neutral and ion 

kinetic and internal energy distributions.  The dashed lines show the model cross section 

in the absence of experimental kinetic energy broadening for reactants with an internal 

energy of 0 K, part b 

 

Figure 3.3. Cross sections for collision-induced dissociation of M+(ta12C4) complexes, 

where M+ = K+, Rb+, and Cs+, with Xe as a function of kinetic energy in the center-of-

mass frame (lower x-axis) and the laboratory frame (upper x-axis).  Data are shown for a 

Xe pressure of ~0.2 mTorr, parts a-c, respectively. Zero-pressure extrapolated cross 

sections for collision-induced dissociation of M+(ta12C4) complexes, where M+ = K+. 

Rb+, and Cs+. The solid lines show the best fits to the data using the model of equation 

2.4 convoluted over the neutral and ion kinetic and internal energy distributions.  The 

dashed lines show the model cross sections in the absence of experimental kinetic energy 

broadening for reactants with an internal energy of 0 K. 
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Figure 3.4. B3LYP/def2-TZVPPD optimized geometries and relative stabilities (in 

kJ/mol) of the stable low-energy conformers of the Na+(ta12C4) complex. 

 

Figure 3.5. B3LYP/def2-TZVPPD optimized geometries and relative stabilities (in 

kJ/mol) of the stable low-energy conformers of the K+(ta12C4) complex. 

 

Figure 3.6. B3LYP/def2-TZVPPD optimized geometries and relative stabilities (in 

kJ/mol) of the stable low-energy conformers of the Rb+(ta12C4) complex. 

 

Figure 3.7. B3LYP/def2-TZVPPD optimized geometries and relative stabilities (in 

kJ/mol) of the stable low-energy conformers of the Cs+(ta12C4) complex. 

 

Figure 3.8. Gibbs free energies (kJ/mol) calculated at the B3LYP/def2-TZVPPD level of 

theory of three conformations of M+(ta12C4) complexes as a function of alkali metal 

cation identity relative to the energy of the ground-state conformer. 

 

Figure 3.9. MP2(full) and B3LYP calculated versus TCID measured M+-ta12C4 BDEs at 

0 K (in kJ/mol), where M+ = Na+, K+, Rb+, and Cs+.  Calculated using the def2-TZVPPD 

basis set (!) and the 6-311+G(2d,2p)_HW basis set ("). All values are determined here 

and taken from Table 4.2. 

 

Figure 3.10. Measured and Theoretical bond dissociation energies at 298 K (in kJ/mol) 

of the M+(ta12C4) (blue) and M+(12-crown-4) (red) complexes plotted versus the ionic 

radius of M+ [39]. All values for the M+(ta12C4) complexes are determined here and 

taken from Table 4.2. Values for the M+(12C4) complexes are taken from [18]. 
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Figure 3.11. Comparison of TCID measured and calculated M+–ta12C4 and M+–12C4 

BDEs at 0 K (in kJ/mol), where M+ = Na+, K+, Rb+, and Cs+. All values for the 

M+(ta12C4) complexes are determined here and taken from Table 4.2. Values for the 

M+(12C4) complexes are taken from [18]. 
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CHAPTER 4 
INFRARED MULTIPLE PHOTON DISSOCIATION ACTION SPECTROSCOPY 

OF ALKALI METAL CATION – CYCLEN COMPLEXES: EFFECTS OF 
ALKALI METAL CATION SIZE ON GAS-PHASE CONFORMATION 

Portions of this chapter were reprinted with permission Austin, C.A., Chen, Y., Kaczan, 

C.M., Berden, G., Oomens, J., and Rodgers, M.T. Infrared Multiple Photon Dissociation 

Action Spectroscopy of Alkali Metal Cation – Cyclen Complexes: Effects of Alkali 

Metal Cation Size on Gas-Phase Conformation. Int. J. Mass Spectrom. 354–355 (2013) 

346. 

 
4.1. Introduction 

Cyclen (1,4,7,10-tetraazacyclododecane, ta12C4), the aza analogue of 12-crown-4 

(1,4,7,10-tetraoxacyclodecane) is extensively used in many applications ranging from 

biomedical imaging  [1–4] to many different areas of chemistry including synthetic, 

analytical, and pharmaceutical chemistry [5–10].  For most applications, the backbone of 

ta12C4 is highly functionalized to effect very strong binding to transition metal cations. 

 IRMPD action spectroscopy has previously been used to investigate crown ether 

interactions with protons [11], metal cations [12–15], and small organic cations [16–19].  

All of the studies reported to date have involved crown ethers possessing oxygen donor 

atoms, and have primarily focused on the 18-membered ring, 18-crown-6, rather than the 

nitrogen analogs and smaller 12-membered ring of ta12C4 examined here.  For the alkali 

metal cation complexes of 18-crown-6, the ground-state conformation changes as a 

function of the size of the alkali metal cation, and in most cases evidence for a small 

population of excited conformers is found in the IRMPD experiments [14].  For the 12-

membered ring, 12-crown-4, Armentrout and co-workers investigated complexes with the 

dications, Zn2+ and Cd2+ [16].  In this study, results were compared to the interactions 

with 15-crown-5 and 18-crown-6, and showed that the conformation of the metal-crown 
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ether complex is highly dependent on the size and charge of the metal cation as well as 

the flexibility of the crown ether [16].  

 In this chapter, the IRMPD action spectra were measure for the dissociation of 

four M+(ta12C4) complexes, where M+ = Na+, K+, Rb+, and Cs+. Identification of the 

conformation(s) accessed in the experiments was achieved by comparison to linear IR 

spectra derived from quantum chemical calculations of the stable low-lying structures of 

the M+(ta12C4) complexes with structures optimized and vibrational frequencies 

determined at the B3LYP/def2-TZVPPD level of theory.  Relative energies for these 

complexes were calculated at the B3LYP/def2-TZVPPD and MP2(full)/def2-TZVPPD 

levels of theory, and for the largest alkali metal cations, Rb+ and Cs+, an ECP was used to 

describe the alkali metal cation. 

 

4.2. Infrared Multiple Photon Dissociation Action Spectroscopy Experiments 

IRMPD action spectra of four M+(ta12C4) complexes were measured using a 4.7 

T Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) coupled to 

the FELIX free electron laser (FEL) previously located at the FOM Institute for Plasma 

Physics, Rijnhuizen, but recently moved to the Radboud University of Nijmegen.  The 

experimental setup used in these experiments has been described in detail elsewhere 

[20,21].  The M+(ta12C4) complexes, where M+ = Na+, K+, Rb+, and Cs+, were formed by 

electrospray ionization (ESI) using a Micromass “Z-spray” source and accumulated in a 

hexapole trap for several seconds followed by pulsed extraction through a quadrupole 

bender and injected in the ICR cell via rf octopole ion guide through electrostatic 

switching of the dc bias on the octopole.  This dc bias switching method allows ions to be 

captured in the ICR cell in the absence of a gas pulse, thus avoiding collisional heating of 

the ions as described in detail elsewhere [22].  Isolation of the precursor ions was 

achieved using stored waveform inverse Fourier transform (SWIFT) techniques prior to 

irradiation by the FEL at pulse energies of ~50 mJ per macropulse of 5 µs duration at a 
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repetition rate of 10 Hz.  The number of photons required to effect efficient dissociation 

of the M+(ta12C4) complexes varies inversely with the size of the alkali metal cation 

such that the irradiation time was varied between 2 and 5 s for the complexes investigated 

here, corresponding to interaction with 20 to 50 macropulses over the wavelength region 

extending from 16.7 µm (600 cm-1) to 6.3 µm (1600 cm-1). 

 

4.3. Theoretical Calculations 

Initial candidate structures for the M+(ta12C4) complexes were generated using 

five of the low-energy neutral ta12C4 structures, i.e., those that were expected to provide 

the most favorable geometries for interaction with the alkali metal cation, and placing the 

alkali metal cation in various positions to exhaustively probe the range of geometries that 

allow interaction with one, two, three, and all four of the nitrogen donor atoms. In 

addition, structures analogous to the ground-state conformations of the M+(12-crown-4) 

complexes previously reported were also used  [23-27].  Again, the 15 most stable 

structures of each of the M+(ta12C4) complexes from the simulated annealing cycles 

performed were chosen for higher-level geometry optimization. 

Geometry optimizations of neutral ta12C4 and the M+(ta12C4) complexes, where 

M+ = Na+, K+, Rb+, and Cs+, were performed using the def2 triple zeta valence basis sets 

of Rappoport and Furche, def2–TZVPPD, which include polarization and diffuse 

functions, and use an ECP for the rubidium and cesium atoms developed by Leininger et 

al  [28–29].  The def2-TZVPPD basis set was obtained from the EMSL basis set 

exchange [30–31].  All structures were optimized at the B3LYP/def2-TZVPPD level of 

theory using the Gaussian 03 suite of programs [32].  Theoretical linear IR spectra were 

generated using the calculated harmonic vibrational frequencies (scaled by a factor of 

0.9704) and IR intensities.  For comparison to the measured IRMPD action spectra, the 

theoretical linear IR spectra were broadened using a 20 cm-1 full width at half maximum 

(fwhm) Gaussian line shape. 



www.manaraa.com

! "&!

 

4.4. Results 

4.4.1. IRMPD Action Spectra 

Photodissociation of M+(ta12C4), where M+ = Na+, K+, Rb+, and Cs+, results in 

loss of the intact neutral ta12C4 ligand and detection of the alkali metal cation. The 

IRMPD yield for each complex was determined using Eq. (4.1), 

 

                           (4.1) 

where the M+ fragment ion intensity ( ) after laser irradiation is divided by the total 

ion intensity .  The IRMPD yield was not corrected for variations in the 

laser power as a function of the wavelength of the FEL because the uncorrected spectra 

provide a better match to the relative intensities of the linear IR spectra predicted.  The 

IRMPD behavior was investigated over the range of wavelengths extending from 6.3 µm 

(1600 cm-1) to 16.7 µm (600 cm-1) for all four M+(ta12C4) complexes.  

The IRMPD action spectra of the four alkali metal cation–ta12C4 complexes 

investigated here are compared in Figure 4.1.  As can be seen in the figure, the features 

observed for the Na+(ta12C4) complex are retained for all of the other alkali metal cation-

ta12C4 complexes.  New spectral features appear in the IRMPD spectrum of K+(ta12C4), 

and become very obvious in the spectra of the larger alkali metal cation-ta12C4 

complexes, Rb+(ta12C4), and Cs+(ta12C4).  The IRMPD yields for the M+(ta12C4) 

complexes increase as the size of the alkali metal cation increases, consistent with the 

decrease in the strength of binding with increasing size of the alkali metal cation.  The 

IRMPD yield of the most intense spectral feature(s) increases by more than a factor of 10 

from Na+(ta12C4) to K+(ta12C4), while increasing by a factor of three from K+(ta12C4) 

to Rb+(ta12C4), and 1.5 from Rb+(ta12C4) to Cs+(ta12C4).  Small systematic shifts in the 

peak positions are observed across these systems, consistent with observations reported in 

previous studies of alkali metal cations interacting with a variety of amino acid and 
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nucleobase ligands [33-42].  The spectral features that are retained throughout the 

IRMPD spectra of the four M+(ta12C4) complexes examined here are increasingly blue 

shifted as the size of the alkali metal cation increases, except for the spectral feature 

centered at 805 cm-1 in the spectrum of the Na+(ta12C4) complex.  A slight blue shift of 

this feature (to 808 cm-1) is observed for K+(ta12C4), whereas no shift is observed for the 

Rb+(ta12C4) and Cs+(ta12C4) complexes.   

 

4.4.2. Theoretical Results 

Structures for the complexes of ta12C4 to the alkali metal cations, Na+, K+, Rb+, 

and Cs+ were calculated as describe in the Theoretical Calculations section of Chapter 2.  

The nomenclature used to identify the different conformations is adopted from a previous 

study by Bosnich et al, where (+) and (-) signs are used to designate the positions of the 

amine hydrogen atoms as lying above or below the plane of the ring [43]. The optimized 

ground-state structures obtained for the M+(ta12C4) complexes, where M+ = Na+, K+, 

Rb+, and Cs+, along with the calculated binding energies are shown in Figure 4.2.  

Similar figures for the three most stable excited low-energy conformers are provided as 

Figures 4.3–4.5.  Relative enthalpies and Gibbs free energies as well as estimated 

populations for Maxwell-Boltzmann distributions at 298 K calculated at the B3LYP and 

MP2(full) levels of theory, using the B3LYP/def2-TZVPPD optimized geometries and 

the def2-TZVPPD basis set are given in Table 4.1.  For both levels of theory, the relative 

enthalpies and Gibbs free energies at 298 K of these complexes vary with the size of the 

metal cation, see Table 4.1 and Figure 4.6.  Both B3LYP and MP2(full) theories find 

that for all four alkali metal cation-ta12C4 complexes, the C4(++++)  conformer is the 

ground-state conformation, while the C2v(+-+-) conformer is the least stable among the 

four stable low-energy conformations computed.  In contrast, the relative stabilities of the 

C2v(++++) and Cs(+++-) conformers vary with the size of the alkali metal cation and the 

level of theory employed.  At the B3LYP level of theory, there is little variation in the 
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relative Gibbs free energy as a function metal cation identity, Figure 4.6a.  In contrast, 

the MP2(full) level of theory predicts greater variation in the relative Gibbs free energies 

as a function metal cation identity, Figure 4.6b, where the relative stabilities become 

closer as the size of the alkali metal cation increases.  It was previously shown that 

B3LYP/def2-TZVPPD results exhibit the best agreement with the experimentally 

determined binding affinities of the alkali metal cation–ta12C4 complexes [ 44 ]. 

Therefore, the following discussion focuses on the geometries optimized at the 

B3LYP/def2-TZVPPD level of theory, while energetics computed at the B3LYP and 

MP2(full) levels of theory using the def2-TZVPPD basis set are compared. 

 For all of the alkali metal cation–ta12C4 complexes at both the B3LYP and 

MP2(full) levels of theory, the lowest energy structure is the C4(++++) conformation, 

where all four nitrogen donor atoms are oriented towards the metal cation (Figure 4.2).  

For all of the alkali metal cation–ta12C4 complexes, the four M+–N bond distances are 

equal and increase with the size of the alkali metal cation from 2.434 Å for Na+ to 3.190 

Å for Cs+.   The !NM+N bond angles decrease with the size of the cation from 76.4° to 

57.7° for the complexes to Na+ through Cs+, consistent with the elongations of the M+–N 

bond distances.  In concert with these changes, the !NCCN and !CNCC dihedral angles 

increase and decrease from 61.1° to 64.3° and -161.4° to -160.5°, respectively, for the 

complexes to Na+ through Cs+.  For the C2v(++++) conformer of the Na+(ta12C4) 

complex, all four M+–N bond distances are equal, whereas the four M+-N bond distances 

are split into two groups that differ by 0.07, 0.10, and 0.17 Å in length for the complexes 

to K+, Rb+, and Cs+, respectively, (Figures 4.3).  In the C2v(++++) conformations, and 

the !NCCN dihedral angles alternate between positive and negative values.  For the 

Cs(+++-) conformations (Figure 4.4), one of the amino groups is further away from the 

metal cation than the other three, suggesting a weaker interaction with the fourth donor 

atom.  In the C2v(+-+-) conformers (Figure 4.5), the amine hydrogen atoms alternate up 

and down with respect to the position of the alkali metal cation, and the !NCCN dihedral 
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angles alternate between positive and negative values.  The four !NCCN dihedral angles 

of the C2v(+-+-) conformer of Na+(ta12C4) are equal, but are again split into two groups 

that differ by 0.10°, 7.0°, and 6.0° for the complexes to K+, Rb+, and Cs+, respectively. 

 

4.5. Discussion 
4.5.1. Comparison of Experimental IRMPD and Theoretical IR Spectral of 
Na+(ta12C4) 

Figure 4.7 compares the experimental IRMPD action spectrum with the 

theoretical IR spectra for the four low-energy conformers found for the Na+(ta12C4) 

complex.  Because the experimental IRMPD yields are based on multiple photon 

processes, while the theoretical IR intensities are based on a single photon absorption 

process, the relative intensities predicted by theory do not always correspond well with 

the measured action spectrum.  Good agreement between the IRMPD action spectrum 

and the calculated IR spectrum for the ground-state C4(++++) conformer is obtained for 

the bands that are observed experimentally, suggesting that the ground-state C4(++++) 

conformer is accessed in the experiments.  For the C4(++++) conformer, the bands 

centered at 812 and 933 cm-1 are blue shifted by 7 cm-1 relative to the measured IRMPD 

spectrum, while the band centered at 1366 cm-1 is blue shifted by 21 cm-1.  The peak 

centered at 1068 cm-1 in the theoretical spectrum for the C4(++++) conformer is red 

shifted by 2 cm-1 relative to the measured IRMPD spectrum.  However, many additional 

bands of lower intensity were predicted that are not observed, indicating that the IRMPD 

efficiency at these wavelengths is poor for the strongly bound Na+(ta12C4) complex.  For 

the C2v(++++) conformer, the bands centered at 814, and 927, and 1355 cm-1 are blue 

shifted by 9, 1, and 10 cm-1, respectively, relative to the measured IRMPD spectrum.  The 

peak centered at 1061 cm-1 in the theoretical spectrum for the C2v(++++) conformer is red 

shifted by 9 cm-1 relative to the measured IRMPD spectrum.  The presence of the 

C2v(++++) conformer in the experiments is difficult to rule out without a more careful 
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analysis.  The C2v(++++) conformer lies 18.9 and 19.6 kJ/mol higher in free energy than 

the ground-state C4(++++) conformer at the B3LYP and MP2(full) levels of theory, 

respectively.  Assuming that the computed energies are reliable and that an equilibrium 

distribution at 298 K were present, the C2v(++++) conformer would comprise less than 

0.05% of the reactant population.  A broad spectral feature between 760 and 860 cm-1 is 

predicted in the theoretical IR spectrum of the Cs(+++-) conformer instead of the 

relatively narrower band observed at 805 cm-1 in the IRMPD action spectrum.  The bands 

centered at 900, 1068, and 1357 cm-1 in the theoretical spectrum of the Cs(+++-) 

conformer are red shifted by 26, 2, and 12 cm-1, respectively, relative to the measured 

IRMPD spectrum.  The Cs(+++-) conformer lies 26.4 and 20.8 kJ/mol above the ground 

state C4(++++) conformer at the B3LYP and MP2(full) levels of theory, and would thus 

comprise less than 0.1% of the reactant ion population in a 298 K Maxwell-Boltzman 

distribution, suggesting this conformer was not accessed in this experiments.  The spectra 

calculated for the C2v(+-+-) conformer also exhibits intense spectral features near those 

observed in the IRMPD action spectrum, but in most cases the computed bands are 

moderately red shifted, suggesting that this conformer was not accessed in the 

experiments.  The absence in the measured IRMPD spectrum of the very intense band 

centered at 674 cm-1 in the predicted IR spectrum, and the relatively high free energy 

computed for this conformer are probably the most diagnostic for confirming that this 

conformer was not accessed in the experiments. 

  The agreement between the experimental IRMPD action spectrum and the 

theoretical IR spectrum for the ground-state C4(++++) conformer allows for a qualitative 

assignment of the vibrational features for the Na+(ta12C4) complex (Table 4.2).  The 

most intense band observed at 805 cm-1 in the IRMPD spectrum for Na+(ta12C4) 

corresponds to a complex mode comprised of M+–N stretching, N–H bending, and CNC 

scissoring.  The next most intense spectral feature, at 1070 cm-1, corresponds to a mode 

comprised of CH2 stretching and a C–N torsion that is doubly degenerate and is red 
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shifted by 2 cm-1 relative to the measured IRMPD spectrum.  The very weak band 

observed at 926 cm-1 is also doubly degenerate and corresponds to a mode of mixed 

character arising from N–H and CH2 rocking.  The weak band observed at 1345 cm-1 

corresponds to doubly degenerate CH2 scissoring modes. 

 
4.5.2. Comparison of Experimental IRMPD and Theoretical IR Spectral of 
K+(ta12C4) 

The IRMPD action spectrum of K+(ta12C4) is similar to that of Na+(ta12C4), see 

Figure 4.1.  However, the IRMPD yield has increased by more than an order of 

magnitude such that new bands are now evident at 835, 888, 1126, 1244, and 1451 cm-1.  

This is primarily the result of enhanced sensitivity associated with more facile 

dissociation of this less strongly bound system.  The K+-ta12C4 bond dissociation energy 

(BDE) is 176.4 ± 7.8 kJ/mol, and is substantially weaker than the Na+–ta12C4 BDE, 

280.8 ± 11.5 kJ/mol [44].  Based on the measure BDEs, 63% fewer photons are needed to 

dissociate the K+(ta12C4) complex as compared to the Na+(ta12C4) complex. 

 Good agreement between the measured IRMPD action spectrum and the 

calculated IR spectrum for the ground-state C4(++++) conformer is found, as can be seen 

in the comparison of Figure 4.8.  The band positions are well reproduced, suggesting that 

the ground-state structure is accessed in the experiments.  In most cases, the bands in the 

theoretical IR spectrum for the C4(++++) conformer are slightly red shifted as compared 

to the measured IRMPD spectrum, e.g., the bands centered at 808, 888, 1075, 1126, and 

1244 cm-1 in the measured spectrum are red shifted by 2, 6, 6, 15, and 5 cm-1, 

respectively, in the calculated spectrum.  In contrast, the bands that are centered at 835, 

1354, and 1451 in the measured IRMPD spectrum are blue shifted in the predicted 

spectrum for the C4(++++) conformer by 4, 13, and 3 cm-1, respectively.  For the 

calculated spectrum of the C2v(++++) conformer, overlapping spectral features are also 

observed, but most of the spectral features are red shifted as compared to experiment.  
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Bands centered at 793, 863, 1058, and 1432 cm-1 in the theoretical IR spectrum for the 

C2v(++++) conformer are red shifted by 17-25 cm-1, while the bands centered at 928 and 

1351 cm-1 are red shifted by 9 and 3 cm-1, respectively, relative to the measured IRMPD 

spectrum.  The bands at 1134 and 1260 cm-1 in the theoretical IR spectrum for the 

C2v(++++) conformer are blue shifted by 8 and 16 cm-1, respectively, relative to the 

measured IRMPD spectrum. The C2v(++++) conformer lies 25.8 and 25.7 kJ/mol above 

the ground-state C4(++++) conformer at the B3LYP and MP2(full) levels of theory, 

respectively, an increase in the relative Gibbs free energy difference for the ground-state 

and first-excited conformers as compared to those of the Na+(ta12C4) complex.  The 

spectrum computed for the Cs(+++-) conformer exhibits a broad feature between 760 and 

860 cm-1 that does not match well with the peak observed at 808 cm-1 in the experimental 

IRMPD spectrum of the K+(ta12C4) complex.  Other features observed in the low 

frequency region between 600 and 1000 cm-1 are not reproduced or are blue shifted as 

compared to experiment for the Cs(+++-) conformer.  The three bands observed at 1075, 

1126, and 1354 cm-1 are in good agreement with the Cs(+++-) conformer in position, but 

not in relative intensity.  The Cs(+++-) conformer lies 25.9 and 18.8 kJ/mol above the 

ground-state C4(++++) conformer at the B3LYP and MP2(full) levels of theory 

respectively, a decrease in the relative Gibbs free energy difference for the ground-state 

and second-excited conformers as compared to those of the Na+(ta12C4) complex.  Based 

on the relative Gibbs free energies, the C2v(++++) and Cs(+++-) conformers would 

comprise less than 0.1% of the K+(ta12C4) population at 298 K.  The observed spectral 

differences and relative stabilities suggest that these conformers are not accessed in the 

experiments.  There are several spectral features predicted for the C2v(+-+-) conformer 

that overlap with those observed in the low frequency region, i.e., those centered at 811, 

886, and 937 cm-1, that are only slightly blue shifted (by less than 3 cm-1) relative to the 

measured IRMPD spectrum, but the relative intensities differ markedly.  Spectral features 

matching those that are observed at 1075, 1354, and 1451 cm-1 are red shifted in the 
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theoretical IR spectrum for the C2v(+-+-) conformer by 9, 10, and 6 cm-1, respectively.  

There are several intense spectral features predicted in the theoretical IR spectrum for the 

C2v(+-+-) conformer (i.e., the peaks centered at 640, 740, 1136, and 1483 cm-1) that are 

not observed in the IRMPD action spectrum, suggesting that this conformer is not 

accessed in the experiments.  In addition, the C2v(+-+-) conformer lies 44.3 and 41.4 

kJ/mol higher in free energy at the B3LYP and MP2(full) levels of theory, respectively, 

further confirming  that this conformer was not accessed in the experiments.  

 Assignments for the bands observed in the K+(ta12C4) action spectrum based on 

comparison to the IR spectrum computed for the ground state C4(++++) conformer are 

consistent with those assigned for the Na+(ta12C4) complex.  The most intense spectral 

feature is now centered at 1075 and corresponds to a mode of mixed character comprised 

of a C–N torsion and CH2 stretching.  The peak observed at 808 cm-1, corresponds to a 

complex mode comprised of M+–N stretching, N–H bending, and CNC scissoring.  The 

peak observed at 937 cm-1, corresponds to a doubly degenerate N–H and CH2 rocking 

modes.  The new spectral feature observed at 888 cm-1 corresponds to a CH2 rocking and 

N–H bending mixed character mode.  The band centered at 835 cm-1 corresponds to N–H 

bending coupled with CH2 rocking.  The peak at 1451 cm-1 corresponds to a mixture of 

singly and doubly degenerate N–H wagging and CH2 scissoring modes.  The feature at 

1354 cm-1 corresponds to doubly degenerate CH2 wagging modes.  The peak centered at 

1126 cm-1 is the result of a doubly degenerate C–N stretch.  The peak with the lowest 

IRMPD yield, at 1244 cm-1, corresponds to a mode of mixed character comprised of 

doubly degenerate CH2 twisting and N–H wagging. 

 
4.5.3. Comparison of Experimental IRMPD and Theoretical IR Spectral of 
Rb+(ta12C4) 

The experimental IRMPD action spectrum for the Rb+(ta12C4) complex is shown 

in Figure 4.9, and is the most complicated spectrum thus far.  Compared to the 
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experimental IRMPD spectrum of K+(ta12C4), the Rb+(ta12C4) complex retains all the 

same bands, but new features are observed at 752, 1008, and 1284 cm-1, Figure 4.1.  For 

the major feature centered at 805 cm-1, there is the appearance of small shoulder at 787 

cm-1.  In addition, there is a notable increase in the relative intensity of the peaks 

observed, more so in the frequency range between 1100 and 1600 cm-1; peaks in this 

region increase by approximately 2 orders of magnitude.  As previously stated, the 

appearance of new bands could be the result of better sensitivity associated with more 

facile dissociation of this more weakly bound system, or could be evidence of additional 

conformers being accessed in the experiments.  The Rb+–ta12C4 BDE, 146.7 ± 4.6 

kJ/mol, is substantially weaker than that those of Na+(ta12C4) and K+(ta12C4) [44].  

Based on the measured BDEs, only 52 and 83% as many photons are needed to dissociate 

the Rb+(ta12C4) complex, as compared to the Na+(ta12C4) and K+(ta12C4) complexes, 

respectively.   

Excellent agreement between the measured IRMPD action spectrum and the 

calculated IR spectrum for the ground-state C4(++++) conformer is found, as can be seen 

from the comparison in Figure 4.9.  The band positions are well reproduced, suggesting 

that the ground-state conformer is accessed in the experiments.  The most intense spectral 

feature appears at 1075 cm-1 and is red shifted by 6 cm-1 in the calculated spectrum for 

the ground-state conformer.  The bands centered at 805, 838, 889, 1008, 1075, 1121, 

1241, and 1284 cm-1 in the measured IRMPD spectrum are red shifted by 2, 7, 9, 7, 6, 9, 

2, and 9 cm-1, respectively, while the bands centered at 1357 and 1446 cm-1 are blue 

shifted by 4 and 2 cm-1 in the theoretical IR spectrum predicted for the C4(++++) 

conformer.  As found for the K+(ta12C4) complex, the spectral features observed in the 

low frequency region between 600 and 1000 cm-1 are not reproduced, or are blue shifted 

in the predicted IR spectrum of the Cs(+++-) conformer as compared to experiment.  The 

three bands centered at 1075, 1121, and 1357 cm-1 are in good agreement with the 

Cs(+++-) conformer in position, but not in relative intensity, and are red or blue shifted 
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by less than 3 cm-1.  The bands predicted at 788 and 842 cm-1 that contribute to the broad 

feature in the theoretical IR spectrum for the Cs(+++-) conformer match well with the 

features observed in the experimental spectrum at 787 and 838 cm-1, respectively.  The 

difference in the Gibbs free energy at the B3LYP level of theory, 20.1 kJ/mol, suggests 

the conformer would comprise less than 0.1% of the Rb+(ta12C4) population at 298 K.  

In contrast, the difference in the Gibbs free energy at the MP2(full) level of theory, 9.7 

kJ/mol, suggests the conformer would comprise 2.1% of the Rb+(ta12C4) population at 

298 K.  The absence of the intense band predicted at 703 cm-1 in the IRMPD spectrum is 

probably the most diagnostic for ruling out a significant presence of the Cs(+++-) 

conformer in the experiments.  However, the appearance of the shoulder at 787 cm-1 in 

the measured IRMPD spectrum matches well with the feature observed at 789 cm-1 in the 

predicted IR spectrum for the Cs(+++-) conformer, suggesting that a very small 

population of this conformation may have been accessed in the experiments.  For the 

calculated spectrum of the C2v(++++) conformer, overlapping spectral features are 

observed, but most of the spectral features in the ranges between 600 and 1000 cm-1 and 

from 1200 to 1600 cm-1 are red shifted as compared to experiment, similar to that 

observed for the K+(ta12C4) complex.  Bands centered at 805, 937, 1075, 1357, and 1446 

cm-1 in the measured IRMPD spectrum are red shifted by 20, 13, 17, 6, and 14 cm-1, 

while the bands observed at 838, 1121, and 1241 cm-1 are blue shifted by 23, 14, and 16 

cm-1 in the theoretical spectrum predicted for the C2v(++++) conformer.  The C2v(++++) 

conformer lies 21.9 and 18.1 kJ/mol above the ground-state at the B3LYP and MP2(full) 

levels of theory, respectively, such that it would comprise less than 0.1% of the reactant 

ion population in a 298 K Maxwell-Boltzmann distribution.  The spectral and energetic 

differences suggest that this conformer was not accessed in the experiments.  The absence 

of the intense spectral features predicted at 623 and 735 cm-1 and virtually no peak-to-

peak overlap indicates that the C2v(+-+-) conformer is not accessed in the experiments.  

The large difference in the relative Gibbs free energies computed for these conformers at 
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both the B3LYP and MP2(full) levels of theory, 43.5 and 32.1 kJ/mol, respectively, also 

suggest that the C2v(+-+-) conformer is not accessed in the experiments.  

Assignments for the bands observed in the Rb+(ta12C4) action spectrum based on 

comparison to the IR spectrum computed for the ground state C4(++++) conformer are 

consistent with those assigned for the Na+(ta12C4) and K+(ta12C4) complexes.  The new 

spectral feature centered at 752 cm-1 is a mixed character mode comprised of doubly 

degenerate N–H bending with contributions from CH2 rocking.  The feature at 787 cm-1 

can be attributed to a very minor population of the Cs(+++-) conformer and this band is 

assigned as N-H wagging.  This now completes the assignment of all the main bands 

observed in the experimental spectrum as summarized in Table 4.2.  Vibrational modes 

that were previously more rigid due to stronger interactions with the smaller metal 

cations are contributing more to the IRMPD yield.  There is a change in the most intense 

peak as compared to the Na+(ta12C4) and K+(ta12C4) complexes.  The most intense 

spectral peak occurs at 1446 cm-1 and corresponds to a complex mixed character mode 

comprised of N–H wagging and CH2 scissoring.  Similarly, the IRMPD yields of the C–N 

stretch at 1121 cm-1, the CH2 twisting and N–H wagging mixed character mode at 1241 

cm-1, and the doubly degenerate CH2 scissoring mode centered at 1357 cm-1 also 

increased significantly in the IRMPD spectrum.  Theory generally does a very good job 

of reproducing the peak intensities as compared to experimental IRMPD spectrum, but 

predicts the mixed character mode comprised of M+–N stretching, N–H bending, and 

CNC scissoring to be the relatively more intense than the other spectral features in the IR 

spectrum of the C4(++++) conformer. 

 
4.5.4. Comparison of Experimental IRMPD and Theoretical IR Spectral of 
Cs+(ta12C4) 

Figure 4.10 compares the experimental IRMPD action spectrum to the calculated 

IR spectra for the four most stable conformers found for the Cs+(ta12C4) complex.  
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Compared to the experimental spectrum of Rb+(ta12C4), Cs+(ta12C4) retained all the 

same bands, but overall the spectral features observed in the experimental spectrum of 

Cs+(ta12C4) were better resolved.  In addition, there was a notable increase in the 

IRMPD yield of the peaks observed as compared to the M+(ta12C4) complexes to the 

smaller alkali metal cations.  The Cs+–ta12C4 BDE, 131.3 ± 5.6 kJ/mol, is substantially 

weaker than that those of Na+(ta12C4), K+(ta12C4), and Rb+(ta12C4) [44].  Based on the 

measured BDEs, only 47, 74 and 90% as many photons were needed to dissociate the 

Cs+(ta12C4) complex, as compared to the Na+(ta12C4), K+(ta12C4), and Rb+(ta12C4) 

complexes, respectively. 

Excellent agreement between the measured IRMPD action spectrum and the 

calculated IR spectrum for the ground-state C4(++++) conformer is clearly evident in the 

comparison in Figure 4.10.  The band positions are well reproduced, suggesting that the 

ground-state conformer is accessed in the experiments.  The most intense spectral feature 

appears at 805 cm-1 in both the IRMPD spectrum and predicted IR spectrum.  The bands 

centered at 752, 835, 889, 938, 1008, 1081, 1123, and 1240 cm-1 in the measured IRMPD 

spectrum are red shifted by 8, 2, 9, 2, 7, 11, 10, and 2 cm-1, respectively, while the bands 

centered at 1288, 1358 and 1447 cm-1 are blue shifted by 5, 3, and 5 cm-1 in the 

theoretical IR spectrum predicted for the C4(++++) conformer.  As found for the 

K+(ta12C4) and Rb+(ta12C4) complexes, the spectral features observed in the low 

frequency region between 600 and 1000 cm-1 are not reproduced or, are blue shifted as 

compared to experiment in the IR spectrum of the Cs(+++-) conformer.  The two bands 

centered at 1081 and 1123 cm-1 are in good agreement with the Cs(+++-) conformer in 

position, and are red or blue shifted by less than 3 cm-1.  In contrast, the feature centered 

at 1358 cm-1 is not well reproduced in shape or relative intensity.  The bands predicted at 

788 and 845 cm-1 that contribute to the broad feature in the theoretical IR spectrum for 

the Cs(+++-) conformer are only blue and red shifted by 5 and 10 cm-1 as compared to the 

features in experimental spectrum at 783 and 835 cm-1, respectively, however, the central 
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feature at 818 cm-1 is much less intense and blue shifted by 13 cm-1.  The difference in 

the Gibbs free energy at the B3LYP level of theory, 20.1 kJ/mol, suggests the conformer 

would comprise less than 0.1% of the Cs+(ta12C4) population at 298 K.  In contrast, the 

difference in the Gibbs free energy at the MP2(full) level of theory, 6.3 kJ/mol, suggests 

the conformer would comprise 8.9% of the Cs+(ta12C4) population at 298 K.  The 

absence of the intense band predicted at 699 cm-1 in the IRMPD spectrum is probably 

most diagnostic for ruling out a significant presence of the Cs(+++-) conformer in the 

experiments.  However, the appearance of the shoulder at 783 cm-1 in the measured 

IRMPD spectrum matches well with the feature at 788 cm-1 in the predicted IR spectrum 

for the Cs(+++-) conformer, suggesting that a small population of this conformation may 

have been accessed in the experiments.  For the calculated spectrum of the C2v(++++) 

conformer, overlapping spectral features are observed, but most of the spectral features in 

the ranges between 600 and 1000 cm-1 and from 1200 to 1600 cm-1 are red shifted as 

compared to experiment, similar to that observed for the K+(ta12C4) and Rb+(ta12C4) 

complexes.  Bands centered at 805, 938, 1081, 1358, and 1447 cm-1 in the measured 

IRMPD spectrum are red shifted by 20, 8, 23, 9, and 21 cm-1, while the bands observed at 

835, 1123, and 1240 cm-1 are blue shifted by 25, 15, and 21 cm-1 in the theoretical 

spectrum predicted for the C2v(++++) conformer.  The C2v(++++) conformer lies 21.0 

and 11.4 kJ/mol above the ground-state at the B3LYP and MP2(full) levels of theory, 

respectively, such that it would comprise less than 0.1 and 1.0% of the reactant ion 

population in a 298 K Maxwell-Boltzmann distribution, suggesting that a significant 

population of this conformer was not accessed in this experiment. However, the 

appearance of the shoulder at 783 cm-1 in the measured IRMPD spectrum matches well 

with the intense feature at 788 cm-1 in the predicted IR spectrum for the C2v(+++-) 

conformer suggesting that a very small population of this conformation may have been 

accessed in the experiments. However, this shoulder more likely arises from the presence 

of a small population of the Cs(+++-) conformer. The absence of intense spectral features 
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at 623 and 735 cm-1 and virtually no peak-to-peak overlap indicates that the C2v(+-+-) 

conformer is not accessed in the experiments.  The large difference in the relative Gibbs 

free energies computed for this conformer at both the B3LYP and MP2(full) levels of 

theory, 42.9 and 25.8 kJ/mol, respectively, also suggest that the C2v(+-+-) conformer is 

not accessed in the experiments.  

Assignments for the bands observed in the Cs+(ta12C4) action spectrum based on 

comparison to the IR spectrum computed for the ground state C4(++++) conformer, and 

possibly a minor contribution from the Cs(+++-) conformer, exactly parallel those for 

Rb+(ta12C4), Table 4.2. 

 

4.5.5. Effects of Alkali Metal Cation Size of Gas-Phase Conformation 

Based on comparison of the measured IRMPD action spectra for the M+(ta12C4) 

complexes and calculated IR spectra and energetics for the stable low-energy 

conformations of these complexes, it is clear that the symmetry and mode of binding are 

not altered by the size of the alkali metal cation.  The C4(++++) conformation remains the 

ground-state conformation for all four alkali metal cations and is the dominant species 

accessed in the experiments.  However, as can be seen in Figure 4.1 the strength of 

interaction between the alkali metal cation and ta12C4 does vary with the cation as 

evidenced by the systematic shifts in several of the spectral features observed in the 

IRMPD spectra of these complexes, in agreement with the measured M+-ta12C4 BDEs 

[44].  Indeed, the strength of binding and the shifting of the frequencies of the spectral 

features are strongly correlated with the size of the metal cation.  The smaller the metal 

cation, the more closely it can approach the ta12C4 ligand, resulting in stronger binding 

and larger spectral shifts as observed.  The systematic variation in the M+-N bond 

lengths, which increase with the size of the alkali metal cation from 2.434 Å for Na+ to 

3.190 Å for Cs+, and the !NM+N bond angles, which decrease with the size of the cation 

from 76.4° for Na+ to 57.7° for Cs+, is nicely illustrated in the ground-state C4(++++) 
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conformers shown in Figure 4.2.  The ta12C4 ring is sufficiently small that even the Na+ 

cation is not quite able to insert itself in the ring, while the larger alkali metal cations 

occupy sites further and further above the ta12C4 ring with increasing size.  To optimize 

the alkali metal cation-N donor binding interactions in these complexes, ta12C4 curves 

toward the Na+ cation.  However, as the size of the alkali metal cation increases, the 

ta12C4 ring becomes slightly flatter to accommodate the binding.  This is easily seen 

from the comparison of the N1-N7 and N4-N10 distances, which increase from 4.268 Å 

for Na+ to 4.348 Å for Cs+.  The presence of a minor population of the first excited 

Cs(+++-) conformers for Rb+ and Cs+, clearly indicates that the size of the alkali metal 

cation is important in determining the conformations accessed in the experiments, and 

suggest that larger, more flexible azacrown ether analogs may exhibit greater variation in 

the preferred alkali metal cation binding modes. 

 

4.6. Conclusions 

IRMPD action spectra of alkali metal cation-ta12C4 complexes in the region 

extending from 600 to 1600 cm-1 have been obtained for four M+(ta12C4) complexes 

where M+ = Na+, K+, Rb+, and Cs+.  For all four complexes, the loss of the intact neutral 

ta12C4 ligand is the only dissociation pathway observed, consistent with simple CID 

fragmentation behavior [44].  The binding energies were found to decrease monotonically 

with the size of the alkali metal cation [44].  Binding of alkali metal cations to ta12C4 

produces similar IRMPD action spectra.  The IRMPD yields for the M+(ta12C4) 

complexes increase as the size the alkali metal cation increases, in accordance with the 

trends in the strength of alkali metal cation binding in these systems.  Spectral features in 

the IRMPD action spectra are retained throughout the entire series, while new spectral 

features are observed for the complexes to the larger alkali-metal cations.  Comparison 

with IR spectra calculated at the B3LYP/def2-TZVPPD level of theory allows the 

conformations present in the experiments to be identified.  For the larger alkali metal 
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cations K+, Rb+, and Cs+, the IRMPD action spectrum is well reproduced by the 

calculated spectrum for the most-stable conformation, C4(++++).  Evidence for the 

presence of a minor population of excited conformations is observed for the complexes to 

Rb+ and Cs+.  For the Na+(ta12C4) complex, the lack of spectral features, which is a 

result of the IRMPD yield being low for this complex, makes identifying the 

conformations accessed in the experiment less definitive, but trends for the larger metal 

cations suggest that only the ground state C4(++++) conformation was accessed in the 

experiments.  This behavior is in sharp contrast to that found for the alkali and transition 

metal cation complexes to 15-crown-5 and 18-crown-6, where the conformation(s) 

accessed vary with the size of the metal cation.  It is presently unclear whether this 

difference arises from the size of the crown (12 versus 15 and 18-membered rings) or the 

nature of the donor atoms (N versus O). 
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Table 4.1. Relative enthalpies and Gibbs free energies (in kJ/mol) and Maxwell-Boltzmann 
populations (%) at 298 K of stable low-energy conformers of M+(cyclen)a 

B3LYP/def2-TZVPPDb MP2(full)/ def2-TZVPPDc Complex Conformer 

!H298 !G298 Pop298 !H298 !G298 Pop298 

Na+(cyclen) C4  (++++) 0.0 0.0 100 0.0 0.0 100 

 C2v (++++) 21.9 18.8 < 0.1 22.7 19.6 < 0.1 

 Cs (+++!) 31.2 26.4 < 0.1 25.6 20.8 < 0.1 

 C2v (+!+!) 53.6 45.4 < 0.1 56.6 48.4 < 0.1 

K+(cyclen) C4  (++++) 0.0 0.0 100 0.0 0.0 100 

 C2v (++++) 27.2 25.8 < 0.1 27.1 25.7 < 0.1 

 Cs (+++!) 26.4) 25.9 < 0.1 19.3 18.8 < 0.1 

 C2v (+!+!) 49.6 44.3 < 0.1 46.7 41.4 < 0.1 

Rb+(cyclen) C4  (++++) 0.0 0.0 100 0.0 0.0 98 

 C2v (++++) 28.6 21.9 < 0.1 24.8 18.1 < 0.1 

 Cs (+++!) 24.5 20.1 < 0.1 14.1 9.7 2.1 

 C2v (+!+!) 45.6 43.5 < 0.1 34.3 32.1 < 0.1 

Cs+(cyclen) C4  (++++) 0.0 0.0 100 0.0 0.0 90 

 C2v (++++) 28.8 21.0 < 0.1 19.1 11.4 1.0 

 Cs (+++!) 24.0 20.1 < 0.1 10.2 6.3 8.9 

 C2v (+!+!) 43.9 42.9 < 0.1 26.9 32.1 < 0.1 
aGeometries optimized at the B3LYP/def2-TZVPPD level of theory.   
bCalculated at B3LYP/def2-TZVPPD level of theory.  
cCalculated at the MP2(full)/def2-TZVPPD level of theory" 
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Table 4.2. Observed band positions (in cm-1) of the vibrational modes of M+(cyclen) complexes 
in the IR fingerprint regiona 

Vibrational mode Na+(cyclen) K+(cyclen) Rb+(cyclen) Cs+(cyclen) 

N–H bending , CH2 rocking !  !  752 752 

N–H waggingb   787 783 

M+–N stretching,  
N–H bending, CNC scissoring 

805 808 805 805 

CH2 rocking, N–H bending ! 835 838 835 

N–H bending, CH2 rocking ! 888 889 889 

N–H bending, CH2 rocking 926 937 937 938 

CH2 rocking, N–H wagging ! ! 1008 1008 

CH2 stretching, C–N torsion 1070 1075 1075 1081 

C–N stretching ! 1126 1121 1123 

CH2 twisting, N–H wagging ! 1244 1241 1240 

CH2 wagging ! ! 1284 1288 

CH2 scissoring 1345 1354 1357 1358 

N–H wagging, CH2 scissoring ! 1451 1446 1447 
aAssignments based on  comparison of the IRMPD action spectra and theoretical IR spectra of 
the ground-state C4(++++) conformers optimized at the B3LYP/def2-TZVPPD level of theory, 
except as noted.   
bAssignments based on Cs(+++!) conformers.  
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4.8. Figure Captions 

 

Figure 4.1.  Measured infrared multiple photon dissociation action spectra of M+(cyclen) 

complexes, where M+ = Na+, K+, Rb+ and Cs+. 

 

Figure 4.2.  B3LYP/def2-TZVPPD ground state C4(++++) conformers and B3LYP/def2-

TZVPPD and MP2(full)/def2-TZVPPD Gibbs free energies of binding at 298 K (in 

kJ/mol) of M+(cyclen) complexes, where M+ = Na+, K+, Rb+, and Cs+. 

 

Figure 4.3. C2v (++++) conformer and Gibbs free energies at 298 K (in kJ/mol) of the 

M+(cyclen) complexes, where M+ = Na+, K+, Rb+, and Cs+, at the B3LYP/def2-TZVPPD 

and MP2(full)/def2-TZVPPD using structures optimized at the B3LYP/def2-TZVPPD 

level of theory. 

 

Figure 4.4. Cs (+++-) conformer and Gibbs free energies at 298 K (in kJ/mol) of the 

M+(cyclen) complexes, where M+ = Na+, K+, Rb+, and Cs+, at the B3LYP/def2-TZVPPD 

and MP2(full)/def2-TZVPPD using structures optimized at the B3LYP/def2-TZVPPD 

level of theory. 

 

Figure 4.5. C2v (+-+-) conformer and Gibbs free energies at 298 K (in kJ/mol) of the 

M+(cyclen) complexes, where M+ = Na+, K+, Rb+, and Cs+, at the B3LYP/def2-TZVPPD 

and MP2(full)/def2-TZVPPD using structures optimized at the B3LYP/def2-TZVPPD 

level of theory. 

 

Figure 4.6. Variation in the B3LYP/def2-TZVPPD and MP2(full)/def2-TZVPPD relative 

Gibbs free energies at 298 K (in kJ/mol) of the four most stable conformations of the 
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M+(cyclen) complexes determined at the B3LYP/def2-TZVPPD level of theory as a 

function of the alkali metal cation.  

 

Figure 4.7. Comparison of the experimental IRMPD action spectrum of Na+(cyclen) with 

linear IR spectra for the four most stable conformations predicted at the B3LYP/def2-

TZVPPD level of theory. B3LYP/def2-TZVPPD and MP2(full)/def2-TZVPPD relative 

Gibbs free energies at 298 K are also shown. 

 

Figure 4.8. Comparison of the experimental IRMPD action spectrum of K+(cyclen) with 

linear IR spectra for the four most stable conformations predicted at the B3LYP/def2-

TZVPPD level of theory. B3LYP/def2-TZVPPD and MP2(full)/def2-TZVPPD relative 

Gibbs free energies at 298 K are also shown.  

 

Figure 4.9. Comparison of the experimental IRMPD action spectrum of Rb+(cyclen) with 

linear IR spectra for the four most stable conformations predicted at the B3LYP/def2-

TZVPPD level of theory. B3LYP/def2-TZVPPD and MP2(full)/def2-TZVPPD relative 

Gibbs free energies at 298 K are also shown.  

 

Figure 4.10. Comparison of the experimental IRMPD action spectrum of Cs+(cyclen) 

with linear IR spectra for the four most stable conformations predicted at the 

B3LYP/def2-TZVPPD level of theory. B3LYP/def2-TZVPPD and MP2(full)/def2-

TZVPPD relative Gibbs free energies at 298 K are also shown. 
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CHAPTER 5 
ALKALI METAL CATION – HEXACYCLEN: EFFECTS OF ALKALI METAL 

CATION SIZE ON THE STRUCTURE AND BINDING ENERGIES 

Portions of this chapter were reprinted with permission Austin, C.A. and Rodgers, M.T. 

Alkali Metal Cation – Hexacyclen: Effects of Alkali Metal Cation Size on the Structure 

and Binding Energies. J. Phys. Chem. A 118 (2014) 5488. 

 

5.1. Introduction 

Hexacyclen (1,4,7,10,13,16-hexaazacyclooctadecane, hexaaza-18-crown-6, 

ha18C6) is a multidentate amine macrocycle, and the aza analogue of 18-crown-6 

(1,4,7,10,13,16-hexaoxacyclooctadecane, 18C6). The structure of ha18C6 is shown in 

Figure 5.1. 

Theoretical investigations of the interactions of hexacyclen with neutral and 

anionic species [1], and a range of transition metal cations including Co3+, Hg2+, and Sn2+ 

[2], and the late first row divalent transition metal cations (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, 

and Zn2+) [3] have been reported. To date, very little gas phase thermochemical and 

spectroscopic information has been reported for hexacyclen interactions with alkali metal 

cations. 

The studies of molecular recognition of metal cations by macrocyclic ligands 

have been extended by probing the nature of the binding interactions in alkali metal 

cation!ha18C6 complexes and providing accurate binding energies for the series of alkali 

metal cations including Na+, K+, Rb+, and Cs+. Results for the M+(ha18C6) complexes 

are compared to the analogous M+(18C6) and M+(ta12C4) complexes to elucidate the 

influence of the donor atoms (N versus O) and the number of donor atoms (six vs. four) 

on the nature and strength of binding. In aqueous solution, alkali metal cations 

preferentially bind to crown ethers over the analogous nitrogen macrocycles [4].  

Investigating the M+(ha18C6) complexes in the gas phase and in solvent (via use of a 
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polarizable continuum solvent model) thus allows separation of the intrinsic binding 

interactions and effects due to solvation. In addition, the effects of the alkali metal cations 

on the conformation of their complexes to ha18C6 are investigated. Previous work 

indicates that the ha18C6 ligand encapsulates metal cations in different geometric 

environments that depend on the size of the metal cation  [2]. 

 

5.2. Collision–Induced Dissociation Experiments 

Cross sections for collision-induced dissociation (CID) of four M+(ha18C6) 

complexes, where M+ = Na+, K+, Rb+, and Cs+, are measured using a guided ion beam 

tandem mass spectrometer that has been described in detail Chapter 2. The M+(ha18C6) 

complexes are generated by electrospray ionization (ESI) [5].  Thermochemical analyses 

of the experimental results are explicitly discussed in Chapter 2. 

 

5.3. Theoretical Calculations 

To obtain model structures, vibrational frequencies, rotational constants, and 

energetics for the neutral ha18C6 ligand and the M+(ha18C6) complexes, molecular 

dynamics simulated annealing procedures and ab initio and density functional theory 

calculations were performed using Hyperchem [6] and the Gaussian 09 suite of programs 

[7], respectively, and is describe in detail in Chapter 2.   

Initial candidate structures chosen for higher-level optimization for the 

M+(ha18C6) complexes were generated using five of the low-energy neutral ha18C6 

structures, those that were expected to provide the most favorable geometries for 

interaction with the alkali metal cation, and those similar to the crystal structures of 

transition metal cation!ha18C6 complexes previously reported [8,9].  The neutral 

ha18C6 geometries used to bind to the metal cation were chosen on the basis of their 

similarities to crystal structures and their ability to fully encapsulate the metal cation (i.e., 

the C3v and D3d structures of Figure 5.1). In all cases the metal cation was placed in the 
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center of the neutral ha18C6 ligand, such that all of the M+!N bond distances were 

approximately equal, and subjected to geometry optimization. 

Vibrational analyses of the geometry-optimized structures were performed to 

determine the vibrational frequencies of the neutral ha18C6 ligand and M+(ha18C6) 

complexes. When used to model the data or to calculate thermal energy corrections, the 

computed frequencies were scaled by a factor of 0.9804 [10].  Single-point energy 

calculations were performed at the B3LYP and MP2(full) levels of theory using 6-

311+G(2d,2p)_HW and def2-TZVPPD basis sets and the B3LYP/6-31+G* _HW and 

B3LYP/def2-TZVPPD optimized geometries, respectively. To obtain accurate BDEs, 

zero-point energy (ZPE) corrections scaled by 0.98 were applied, and basis set 

superposition errors (BSSE) were subtracted from the computed BDEs in the full 

counterpoise correction [11,12].  The BSSE corrections are much smaller for B3LYP 

than MP2(full) calculations. Because previous calculations for the M+(18C6) complexes 

were performed at a lower level of theory [13], analogous calculations for the M+(18C6) 

complexes were also performed here to enable effective comparisons to the M+(ha18C6) 

systems. M+!18C6 BDEs are summarized in Table 5.1. The polarizabilities for the stable 

low-energy conformers of ha18C6 were calculated at the PBE0/6-311+G(2d,2p) level of 

theory using the B3LYP/6-31+G*  optimized geometries. This level of theory has been 

shown to accurately reproduce experimental polarizabilities [14 ]. In addition, the 

polarizabilities for the stable low-energy conformers of ha18C6 were also calculated at 

the PBE0/def2-TZVPPD level of theory. 

To further assess the effects of dispersion on the binding in the M+(ha18C6) 

complexes, limited calculations were also performed at the B3LYP-D/def2-TZVPPD 

level of theory. Likewise, to examine the effects of solvent on the binding, limited 

calculations at the B3LYP/def2-TZVPPD level of theory using a polarizable continuum 

model (PCM) in water and acetonitrile were also performed. Included among these 

calculations were the stable low-energy conformations of the neutral ha18C6 ligand and 
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Na+(ha18C6) complex as well as the ground-state conformations of the M+(ha18C6) 

complexes of the larger alkali metal cations. Calculations for the Cs+(ha18C6) complex 

in both water and acetonitrile, and the Rb+(ha18C6) complex in acetonitrile were 

unsuccessful as the PCM calculations required more memory than available to us. 

B3LYP-D calculations could not be performed for the Cs+(ha18C6) complex as no van 

der Waals radius is available in Gaussian09 for Cs+. 

 

5.4. Results 

5.4.1. Cross Sections for Collision–Induced Dissociation 

Cross sections were measured for the interaction of Xe with four M+(ha18C6) 

complexes, where M+  = Na+, K+, Rb+, and Cs+. Figure 5.2a shows representative data 

for the K+(ha18C6) complex. The complexes to Na+, Rb+, and Cs+ exhibit similar 

behavior, and are provided as Figure 5.3a. In all cases, M+ is the only ionic product 

detected corresponding to endothermic loss of the intact ha18C6 ligand in the CID 

reactions 5.1. 

 

           M+(ha18C6)  +  Xe  !  M+  +  ha18C6  +  Xe  (5.1) 

 

The magnitudes of the cross sections generally increase as the size of the alkali 

metal cation increases from Na+ to Cs+, which is primarily a result of the CID thresholds 

decreasing in that order. 

 

5.4.2. Threshold Analysis. 

The model of Equation 2.4 was used to analyze the thresholds for CID reactions 

5.1 in four M+(ha18C6) systems. The results of these analyses are provided in Table 5.2. 

The molecular parameters of the ground-state structures of the M+(ha18C6) complexes at 

0 K were used in the modeling procedures. A representative analysis is shown in Figure 
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5.2b for the K+(ha18C6) complex. An analogous set of figures for the complexes to Na+, 

Rb+, and Cs+ are provided as Figure 5.3b. In all cases, the experimental cross sections for 

CID reactions 5.1 are accurately reproduced using a loose PSL TS model [15]. Previous 

work has shown that this model provides the most accurate assessment of the kinetic 

shifts for CID processes for noncovalently bound metal! ligand complexes [16–23]. 

  Good reproduction of the experimental data is obtained over energy ranges 

exceeding 3 eV and cross-section magnitudes >3 orders of magnitude for the 

M+(ha18C6) complexes. Table 5.2 also includes threshold values, E0, obtained without 

including the RRKM lifetime analysis in the modeling procedures. The difference 

between these values and the E0(PSL) values provides a measure of the kinetic shifts for 

these systems, which vary from 1.47 eV for the Cs+(ha18C6) complex to 5.10 eV for the 

Na+(ha18C6) complex. All four M+(ha18C6) complexes possess the same number of 

degrees of freedom, the kinetic shifts should directly correlate with the measured 

M+!ha18C6 BDEs (Table 5.2), as observed.  

The entropy of activation, "S†, is a measure of the looseness of the TS. "S† is 

largely determined by the molecular parameters (vibrational frequencies and rotational 

constants) used to model the energized M+(ha18C6) complex and the TS, but also 

depends on the threshold energy. The "S†(PSL) values for these systems at 1000 K 

exhibit modest variation, as expected on the basis of the similarity of these systems, and 

vary between 58 and 78 J#K!1#mol!1. The larger value for the Na+(ha18C6) complex is a 

consequence of both the larger threshold energy and different conformation of the 

energized molecule, Na3(6N), versus that of other complexes, M1(6N). These entropies 

of activation compare favorably to those previously determined in our laboratory for a 

wide variety of noncovalently bound complexes that dissociate via simple noncovalent 

bond cleavage [21–30]. 
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5.4.3. Theoretical Results  

The ground–state and stable low energy conformations of the ha18C6 ligand and 

M+(ha18C6) complexes were determined as described in the Theoretical Calculations 

section of Chapter 2. M+–ha18C6 BDEs calculated at the B3LYP, B3LYP-D, and 

MP2(full) levels of theory using the def2-TZVPPD and 6-311+G(2d,2p)_HW basis sets 

are summarized in Table 5.3, whereas B3LYP/def2-TZVPPD results using the PCM 

model in acetonitrile and water are listed in Table 5.4. Independent ZPE and BSSE 

corrections are also included in the computed BDEs. 

 

5.4.3.1. Neutral ha18C6  

The B3LYP/def2-TZVPPD optimized structures of the neutral ha18C6 ligand 

along with the calculated dipole moments are shown Figure 5.1. Four distinct stable 

geometries were found. Energetics computed using the B3LYP/def2-TZVPPD level of 

theory was determined to be the most reliable in a previous study of the analogous 

M+(ta12C4) complexes [22].  Therefore, the following discussion will focus on the 

geometries and energetics calculated at the B3LYP/def2-TZVPPD level of theory unless 

otherwise noted. The ground-state conformer of ha18C6 is of C3v symmetry and 

surprisingly exhibits a relatively large dipole moment of 2.98 D. Three of the amine 

hydrogen atoms of the ground-state conformer are oriented toward the cavity of the ring 

with corresponding !CNCC dihedral angles of 175.9°, whereas the other three amine 

hydrogen atoms are oriented perpendicular to the cavity of the ring with corresponding 

!CNCC dihedral angles of !178.1°. In this conformation all of the amine hydrogen 

atoms are located on the same side of the neutral ligand such that by the !HNCC dihedral 

angles are all positive and vary from 51.2 to 60.0°. Santos and Drew [1] previously 

reported this structure as the ground state. 

  The next most stable conformer is of C2h symmetry and was previously reported 

as the ground-state structure by Varadwaj et al [3].  The C2h conformer lies 7.9 kJ/mol 
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higher in energy than the C3v  ground–state conformer. In the C2h conformer, the amine 

hydrogen atoms alternate up and down, two amine donor atoms are oriented away from 

the cavity of the ligand, whereas the other four amine hydrogen atoms are oriented 

toward the cavity of the ligand with corresponding !HNCC dihedral angles of ∼ ± 60°. 

The local dipoles of the C2h conformer are anti–aligned and oriented toward the center of 

the cavity, leading to cancellation of the local dipoles and no overall dipole moment due 

to symmetry. Two additional stable conformers are found that are of Ci and D3d 

symmetry that lie 33.8 and 58.9 kJ/mol, respectively, higher in energy than the C3v 

ground–state conformer. Similar to the C2h conformer, the dipoles are anti–aligned for the 

Ci and D3d conformers leading to cancellation, and no net dipole moment. The Ci and D3d 

conformers are similar in that the nitrogen donor atoms alternate up and down in the ring, 

but differ in the positions of the amine hydrogen atoms. For the D3d conformer, the amine 

hydrogen atoms are off set to a greater extent from the plane of the ring with smaller 

average !CNCC and !NCCN dihedral angles of 169.2° and 46.6°, respectively, than the 

Ci conformer with corresponding dihedral angles of 172.3° and 52.6°, respectively. This 

is further illustrated by the differences in the average !HNCC dihedral angles, which are 

68.8° for the Ci conformer, and only 37.2° for the D3d conformer. Similar results are 

found at the MP2(full)/def2-TZVPPD and B3LYP/6-311+G(2d,2p)_HW levels of theory. 

In contrast, and in agreement with the results of Varadwaj et al. [3], the MP2(full)/6-

311+G(2d,2p)_HW level of theory finds the C2h conformation to be the lowest–energy 

structure, whereas the C3v conformer lies a mere 0.4 kJ/mol higher in energy at this level 

of theory. 

 

5.4.3.2. M+(ha18C6)  

The B3LYP/def2-TZVPPD optimized geometries and relative Gibbs free energies 

at 298 K of the stable low-energy conformers of the K+(ha18C6) complex are shown in 

Figure 5.4. Similar conformations were also found for the M+(ha18C6) complexes to the 
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other alkali metal cations investigated and are provided as Figures 5.5–5.7. The 

nomenclature employed to describe these structures is of the form Mx(y,yN), where M 

identifies the metal cation, x indicates the relative order of stability among the stable 

low–energy conformers of the K+(ha18C6) complex, yN is the number of N donor atoms 

coordinated to the alkali metal cation and describes the M+–N interactions as having 

relatively short (y) or relatively longer (y) M+–N bond lengths (versus the average M+–N 

bond lengths). The ground–state conformation of M+(ha18C6) varies with the size of the 

alkali metal cation. Similar results have been found for complexes of transition metal 

cations to 1,5,9,13-tetracyclohexadecane, whereupon changing the size of the metal 

cation, more highly strained conformers are observed to form more stable complexes 

[31]. The ground–state conformation of the M+(ha18C6) complexes at 0 K determined at 

the B3LYP/def2-TZVPPD level of theory is very similar for the K+, Rb+, Cs+ complexes, 

but differs from that found for Na+, Figures 5.4–5.7. However, at 298 K the most stable 

conformation of Na+(ha18C6) is a structure parallel to that found for the other alkali 

metal cations. The relative energies and free energies follow the same order for K+, Rb+, 

and Cs+, whereas the relative "H and "G values differ markedly for Na+, Figure 5.5. At 

the MP2 level of theory (using the def2-TZVPPD basis set) the relative energies and 

Gibbs free energies are similar to those determined at the B3LYP level of theory. In 

contrast, the ground–state conformations transition at Cs+ for calculations performed at 

the B3LYP and MP2 levels of theory using the 6-311+G(2d,2p)_HW basis set. Similar 

behavior was found for the M+(18C6) complexes, where the relative stabilities of the 

stable low-energy conformers were also found to vary with the level of theory employed 

[13]. 

 

5.4.3.2.1. K+(ha18C6)  

In the ground-state conformation of the K+(ha18C6) complex, K1(6N), the K+  

metal cation sits in the center of the nearly planar ring created by the amine donor atoms 
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at an average K+–N bond distance of 2.991 Å. There are small differences in the average 

!NCCN and !CNCC dihedral angles that describe the skeletal backbone of the 

macrocycle that occur upon binding of K+, Table 5.5. The !HNCC dihedral angles are 

influenced the most and increase from 55.6° in neutral ha18C6 to 64.9° in K+(ha18C6). 

There is no change in the average N–H bond distances, whereas the C–N bonds are 

elongated by 0.011 Å. Previously, Santos et al. concluded that for M+(ha18C6) 

complexes to small metal cations such that the M+–N bond distances are <2.6 Å, a more 

bent structure (trigonal prismatic) is preferred, whereas for larger metal cations a planar 

hexagonal conformer is preferred, similar to that found for the K+(ha18C6) complex 

[1,2]. The next most stable conformer, K2(6N), is calculated to lie 44.0 kJ/mol higher in 

free energy and has an average K+–N bond distance of 3.153 Å. In the K2(6N) 

conformer, three of the amine hydrogen atoms are oriented toward the cavity with 

corresponding averages !HNCC dihedral angle of !74.4° , such that the metal cation sits 

slightly above the plane created by the nitrogen donor atoms. The K2(6N) conformer 

skeletal backbone dihedral angles differ from the ha18C6 conformer by 11 to 27° , with 

the !NCCN and !CNCC dihedral angles contracting and the !HNCC dihedral 

expanding. The N–H bonds of the K2(6N) conformer shorten by 0.004 Å, whereas the C–

N bonds are elongated by 0.012 Å versus the ground–state K1(6N) conformer. The 

K3(6N) conformer lies 71.5 kJ/mol higher in free energy and is similar to the trigonal 

prismatic structure observed for ha18C6 interactions with small metal cations as much 

greater distortions of the neutral ligand occur upon binding of K+ in this 

conformation[9,32,33]. The K3(6N) conformer has an average K+–N bond distance of 

2.847 Å. The K4(6N) conformer is more compact such that the average K+–N bond 

distance is the shortest among the low–energy conformers computed, 2.642 Å, and is 

calculated to lie 199.1 kJ/mol higher in free energy! The K4(6N) conformer exhibits the 

greatest distortion upon binding of K+ of all of the stable conformers computed, see 

Table 5.5. Similar trends in the geometric parameters are found for all of the other alkali 
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metal cation–hexacyclen complexes. The K4(6N) conformer possesses an imaginary 

frequency corresponding to a ring-breathing mode where the metal cation moves up and 

down in the center of the ring as the ring stretches and shrinks. Calculations were 

performed using tight convergence in an attempt to remove this imaginary frequency; 

however, even tight convergence failed to eliminate the imaginary frequency. 

 

5.4.3.2.2. Rb+(ha18C6) and Cs+(ha18C6) 

For Rb+ and Cs+, the Cs complexes, M1(6N) are preferred as found for the 

K+(ha18C6) complex. The cavity of ha18C6 is too small to accommodate these larger 

metal cations such that the metal cation sits above the ring in the complexes to Rb+ and 

Cs+, Figure 5.6–5.7. At the B3LYP/def2-TZVPPD level of theory, M2(3N) conformers 

are calculated to lie 18.8 and 7.5 kJ/mol higher in free energy for Rb+  and Cs+ than the 

ground–state M1(6N) conformers, respectively. As previously discussed, at the 

B3LYP/6-311+G(2d,2p)_HW level of theory, the Cs2(3N) conformer, with an average 

Cs+–N bond distance of 3.363 Å, is calculated to be the lowest–energy structure of the 

Cs+ (ha18C6) complex, whereas the Cs1(6N) conformer is calculated to lie 7.1 kJ/mol 

higher in free energy. The Cs1(6N) conformer has an average Cs+–N bond distance of 

3.246 Å, slightly shorter than that found for the Cs2(3N) conformer. In contrast, the 

Rb1(6N) conformer is the ground state for the Rb+(ha18C6) complex at all levels of 

theory. The Rb1(6N) conformer has an average Rb+–N bond distance of 3.082 Å, 

whereas the Rb2(3N) conformer has an average Rb+–N bond distance of 3.200 Å. The 

Rb3(4,2N) and Cs3(2,2N) conformers are more highly distorted than the more symmetric 

M3(6N) complexes found for Na+  and K+, with average M+–N bond distances of 3.123 

and 3.381 Å, respectively. For Rb+(ha18C6), the Rb3(4,2N)  conformer is calculated to 

lie 71.0 kJ/mol higher in free energy than the ground–state Rb1(6N) conformer. For 

Cs+(ha18C6), the Cs3(2,2N) conformer is calculated to lie 42.6 kJ/mol higher in free 

energy than the ground–state Cs1(6N) conformer. The M4(6N) conformers are calculated 
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to lie 272.9 and 358.8 kJ/mol higher in free energy for Rb+ and Cs+, respectively. Similar 

to the K4(6N) conformer, the shortest bond distances are found for the Rb4(6N) (2.756 

Å) and Cs4(6N) (2.875 Å) conformers, which also possess an imaginary frequency 

corresponding to a ring-breathing mode in which the metal cation moves up and down in 

the center of the ring as the ring expands and contracts, respectively. Again, calculations 

were performed using tight convergence, but attempts failed to eliminate the imaginary 

frequency. 

 

5.4.3.2.3. Na+(ha18C6)  

Similar structures are found for the Na+(ha18C6) complex at the B3LYP level of 

theory, however the relative stability order of the conformers changes significantly versus 

the larger alkali metal cations, Figure 5.5. As shown in Figure 5.5, conformers Na1(6N) 

and Na3(6N) are of very similar stability (free energy). At 0 K Na3(6N) is the ground–

state conformation, whereas Na1(6N) is more stable at 298 K. For the Na1(6N) 

conformation, the average Na+–N bond distance is 2.918 Å, suggesting a more weakly 

bound complex than the Na3(6N) conformation where the average Na+–N bond distance 

is 2.571 Å. In the Na1(6N) conformation, the amine groups alternate up and down in the 

ring, and the local dipoles of the amine donor atoms are oriented toward the metal cation. 

This is clearly indicated by the sign of the !HNCC dihedral angles ∼ !68.3°  for the 

amine donor atoms facing down and 68.3° for the nitrogen donor atoms that face up. The 

next most stable conformer, Na3(6N), is calculated to lie 7.1 kJ/mol higher in free energy 

than the ground–state Na1(6N) conformer. In this conformation the local dipoles of all 

six amino groups are oriented toward the metal cation with an average Na+–N bond 

distance of 2.571 Å. Several crystal structures have been reported in the literature where 

ha18C6 encapsulates small transition metal cations such as Hg2+, Co3+, and Cu2+ in 

structures similar to that computed for the Na3(6N) conformer of the Na+ (ha18C6) 

complex[9,32,33].  In most of these cases, the complex is octacoordinate due to the 



www.manaraa.com

! $%"!

presence of counteranions, versus the hexacoordinate ionic complex reported here. We 

identified another high–energy structure also of D3d symmetry, Na4(6N), that lies 45.2 

kJ/mol higher in free energy than the ground-state Na1(6N) conformer. A crystal 

structure similar to the Na4(6N) conformer was reported by Chandrasekhar et al. for the 

Cr(III)[(ha18C6)]Br3! complex [8]. The Na2(6N) conformer was found to possess two 

imaginary frequencies associated with the metal cation bouncing back and fourth in the 

plane of the macrocycle created by the nitrogen donor atoms and is calculated to lie 70.0 

kJ/mol higher in free energy than the ground–state Na1(6N) conformer. In this 

conformation, the amino hydrogen atoms are all located on the same side of the 

macrocyclic ring, whereas in the three more stable conformations, the amine hydrogen 

atoms alternate up and down. Again, re-optimization using tight convergence failed to 

eliminate the imaginary frequencies. 

 

5.5. Discussion  

5.5.1. Comparison of Theory and Experiment 

The M+–ha18C6 BDEs at 0 K measured here by threshold CID techniques are 

summarized in Table 5.3. Also listed in Table 5.3 are the M+–ha18C6 BDEs calculated 

at the B3LYP, B3LYP-D, and MP2(full) levels of theory using the def2-TZVPPD and 6-

311+G(2d,2p)_HW basis sets, including independent ZPE and BSSE corrections. The 

agreement between the calculated and measured BDEs is illustrated in Figure 5.8. As can 

be seen in the figure, the B3LYP/def2-TZVPPD values exhibit very good agreement with 

the measured values for K+, Rb+, and Cs+, but underestimate the strength of binding to 

Na+. The mean absolute deviation (MAD) between theory and experiment is 13.1 ± 16.4 

kJ/mol. The MAD is somewhat larger than the average experimental uncertainty (AEU) 

in these values, 8.9 ± 3.0 kJ/mol. When BSSE corrections are not included (values not 

shown in Figure 5.8), the MAD between the B3LYP/def2-TZVPPD calculated and the 

TCID measured values improves slightly to 11.9 ± 15.6 kJ/mol. In contrast, the MAD 
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between the calculated and measured values is almost twice as large at the B3LYP/6-

311+G(2d,2p)_HW level of theory, 22.9 ± 14.6 kJ/mol. B3LYP theory underestimates 

the strength of interaction in all cases, except for the K+(ha18C6) complex, when the 6-

311+G(2d,2p)_HW basis set is used. The agreement between MP2(full) theory, using 

both the def2-TZVPPD and 6-311+G(2d,2p)_HW basis sets, and measured M+–ha18C6 

BDEs is intermediate between the B3LYP results using these basis sets with MADs of 

16.8 ± 9.4 and 16.2 ± 12.0 kJ/mol, respectively. MP2(full) theory overestimates the 

strength of interaction in all cases, except for the Na+(ha18C6) complex, when the def2-

TZVPPD basis set is used. MP2(full) theory underestimates the strength of interaction in 

all cases, except for the K+(ha18C6) complex, when the 6-311+G(2d,2p)_HW basis set is 

used, similar to the trend observed at the B3LYP level of theory, and as reported 

previously for other ligands binding to the Rb+ and Cs+ cations when the Hay–Wadt ECP 

is used. [21–23, 34–41]  When dispersion corrections are included in the B3LYP model, 

i.e., B3LYP-D, the BDEs increase significantly, and exhibit much poorer agreement with 

the measured values. The MAD between the B3LYP-D and measured BDEs is 45.2 ± 5.9 

kJ/mol, much larger than the AEU in these values, 10 ± 2.6 kJ/mol. Clearly the B3LYP-D 

model is significantly over-correcting for dispersion effects in the binding. 

 

5.5.2. Trends in the Binding of Alkali Metal Cations to ha18C6 

The experimental and calculated M+–ha18C6 BDEs at 0 K are summarized in 

Table 5.3. The variation in the measured BDEs with the size of the alkali metal cation 

[42] is shown in Figure 5.9. Similar to behavior observed for many alkali metal cation–

ligand complexes including M+(ta12C4) [22] and M+(18C6) [20], the M+–ha18C6 BDEs 

are found to decrease monotonically as the size of the alkali metal cation increases from 

Na+ to Cs+. This is the expected trend for binding based primarily on electrostatic 

interactions because the metal–ligand bond distances are primarily determined by the size 

of the metal cation. Smaller cations lead to shorter metal–ligand bond distances and 
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stronger electrostatic interactions [43].  The difference in the M+–ha18C6 BDEs for 

adjacent metal cations becomes smaller as the size of the metal cation increases from Na+ 

to Cs+ because the relative change in the ionic radii for the alkali metal cations becomes 

smaller. 

 

5.5.3. Comparison with 18-crown-6 

The experimentally determined M+–ha18C6 and M+–18C6 [20] BDEs are plotted 

as a function of the ionic radii of the alkali metal cations in Figure 5.9a, whereas the 

measured and calculated M+–ha18C6 and M+–18C6 BDEs are listed in Tables 5.3 and 

5.1, and are compared in Figure 5.9b. Experimentally, the Na+ cation is found to bind 

ha18C6 more strongly than 18C6. In contrast, for all of the larger alkali metal cations, the 

measured M+–18C6 BDEs slightly exceed the M+–ha18C6 BDEs, but are equal within 

the experimental errors in these measurements, suggesting that the differences in the 

binding are not significant. In contrast, both B3LYP and MP2 theory suggest that the 

alkali metal cations should bind to 18C6 more strongly than ha18C6, and that the 

preference for 18C6 should increase with the size of the alkali metal cation. Interestingly, 

although theory overestimates the preference for 18C6, the relative trend in the 

experimental data is reproduced as illustrated in Figure 5.9b.  

Highly parallel results were found for the comparison of the analogous four–

donor system previously investigated, where ta12C4 exhibits preferential binding to Na+, 

whereas the experiments suggest that 12C4 binds slightly more strongly to the larger 

alkali metal cations, K+, Rb+, and Cs+ [22]. In contrast, B3LYP and MP2 theory suggest 

that the alkali metal cations should bind to 12C4 more strongly than ta12C4 as the 

hardness of the metal decreases with the size of the alkali metal cation. However, again 

the measured differences are smaller than the experimental errors in these measurements 

and the expected accuracy of the theoretical methods applied, similar to the behavior 

observed here for ha18C6 and 18C6. These trends suggest that the N donor atoms of 
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ha18C6 exhibit a strong preference for hard metal cations, and help explain their 

selectivity for transition metal cations. 

 

5.5.4. Comparison with ta12C4 

The experimentally determined M+–ha18C6 and M+–ta12C4 BDEs are plotted as 

a function of the ionic radii of the alkali metal cation in Figure 5.10a. Although the 

trends in binding are highly parallel, ha18C6 binds the alkali metal cations more strongly 

than ta12C4. Figure 5.10b compares the TCID measured and theoretically calculated 

M+–ha18C6 and M+–ta12C4 BDEs at 0 K. Solely on the basis of the number of M+–N 

donor interactions, ha18C6 should bind 50% stronger than ta12C4, whereas the 

enhancement in the binding from ta12C4 to ha18C6 is much smaller (19 ± 6%). Theory 

suggests even smaller enhancements in the binding of ha18C6 versus ta12C4 of 9 ± 8% 

and 16 ± 7% at the B3LYP and MP2 levels of theory using def2-TZVPPD basis set, 

respectively. This behavior is not unexpected as ha18C6 provides six alkali metal cation–

nitrogen donor interactions, whereas ta12C4 only provides four, and the strength of the 

M+–N donor interactions should fall off with increasing ligation. 

 

5.5.5. Solvent Effects 

Comparison of the results for the isolated M+(ha18C6) complexes to those 

determined using a PCM model for water or acetonitrile provide an opportunity to gain 

insight into both the intrinsic nature and strength of the binding as well as effects of 

solvent on the binding. The measured M+(ha18C6) BDEs are quite strong in the absence 

of solvent, and decrease as the size of the alkali metal cation increases, from 325.8 (Na+) 

to 221.8 (K+) to 186.1 (Rb+) to 149.0 (Cs+) kJ/mol. As expected, the binding becomes 

much weaker in the presence of solvent as it shields and competes with the ha18C6 

ligand for interactions with the alkali metal cation. The M+–ha18C6 BDEs are weaker in 

water than acetonitrile as expected on the basis of the dielectric constants of these 
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solvents, $ = 78.3 for water, and 35.7 for acetonitrile (as implemented in Gaussian09). In 

water, the M+–ha18C6 BDEs increase from 5.8 kJ/mol for Na+ to 27.7 kJ/mol for K+, and 

then decrease to 9.8 kJ/mol for Rb+. In acetonitrile, the M+–ha18C6 are only slightly 

larger, and increase from 10.5 kJ/mol for Na+ to 31.5 kJ/mol for K+. Thus, both solvents 

lead to a change in the relative binding order. The intrinsic binding is inversely correlated 

with the size of the metal cation, whereas both solvents exhibit selectivity for K+ over the 

other alkali metal cations. Parallel intrinsic and solution behavior has also been reported 

for alkali metal cation binding to 18C6 [13,20]. 

 

5.6. Conclusion   

The kinetic energy dependences of the collision-induced dissociation of four 

M+(ha18C6) complexes, where M+ = Na+, K+, Rb+, and Cs+, with Xe are examined in a 

guided ion beam tandem mass spectrometer. The only dissociation pathway observed for 

all four complexes is loss of the intact ha18C6 ligand. Thresholds for these dissociation 

reactions are determined after careful consideration of the effects of the kinetic and 

internal energy distributions of the reactants, multiple collisions with Xe, and the lifetime 

of the activated M+(ha18C6) complexes using a loose-phase space limit TS model. 

Molecular parameters needed for the analysis of the experimental data as well as 

structures and theoretical estimates for the M+–ha18C6 BDEs are obtained from 

theoretical calculations performed at the B3LYP and MP2(full) levels of theory using the 

def2-TZVPPD and 6-311+G(2d,2p)_HW basis sets. Good agreement between theory and 

experiment is found for the B3LYP/def2-TZVPPD results, and suggest that calculations 

using the hybrid basis set, 6-311+G(2d,2p)_HW, are less worthwhile. MP2(full) theory 

does a reasonable job but does not perform quite as well at B3LYP theory with either 

basis set. Inclusion of dispersion effects in the B3LYP functional, B3LYP-D, leads to a 

gross overestimate in the strength of the binding. Trends in the measured and calculated 

M+–ha18C6 BDEs suggest that the binding is based primarily on electrostatic 
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interactions. For the larger alkali metal cations, K+, Rb+, and Cs+, the nature of the 

binding to ha18C6 is similar, resulting in highly parallel stable low-energy conformations 

of these complexes. The ha18C6 ligand binds Na+ more strongly than 18C6 as previously 

found for ta12C4 vs 12C4. In contrast, a slight preference for binding of 18C6 over 

ha18C6 to K+, Rb+, and Cs+ is found, but this preference is smaller than the experimental 

error in these measurements for K+ and Cs+, suggesting that this binding preference is not 

very significant. Overall, the gas-phase trends in the binding suggest that the N donors 

atoms of ha18C6 bind more strongly to hard metal cations, whereas the O donor atoms of 

18C6 bind slightly more strongly to softer metal cations. In contrast, the B3LYP and 

MP2(full) levels of theory suggest preferential binding of the alkali metal cations to 

18C6. Binding of the alkali metal cations to ha18C6 is found to be 19 ± 6% stronger than 

to ta12C4, indicating that the number of donor atoms, the cavity size, and the flexibility 

of the ligand allow alkali metal cations to bind more strongly but that the enhancement in 

the binding falls off monotonically with each additional M+–N interaction. In solvent, the 

binding interactions are weakened significantly, and the competition between the ha18C6 

ligand and the solvent for the alkali metal cations leads to a change in the relative binding 

order such that ha18C6 is selective for K+ over the other alkali metal cations, parallel to 

the behavior reported for 18C6. 

 

5.7. References   
!
[1] M.A. Santos, M.G.B. Drew, J. Chem. Soc., Faraday Trans. 87 (1991)1321.  

[2] M.G.B. Drew,  M.A. Santos, Struct. Chem. 4 (1993) 5. 

[3] P.R. Varadwaji, A. Varawaj, G.H. Peslherbe, H.M. Marques, J. Chem. Phys. A  115 (2011) 13280. 

[4] L.F. Lindoy, The Chemistry of Macrocyclic Ligand Complexes; Cambridge University Press, 

Cambridge, 1989, p. 13.  
!



www.manaraa.com

! $$)!

!
[5] Y. Chen, M.T. Rodgers, J. Am. Chem. Soc. 134 (2012) 2313 

[6] HyperChem Molecular Modeling Software Package, Version 7.5; Hypercube Inc.: Gainesville, FL, 

2002.  

[7] Frisch, M. J.; et al. Gaussian 09, revision A.1; Gaussian, Inc.: Wallingford CT, 2009.  

[8] S. Chandrasekhar, D.G. Fortier, A. McAuley, Inorg. Chem. 32 (1992) 1424.  

[9] M.A.A.F. de C.T. Corrondo, V. Félix, M.T. Durate, M.A. Santos, Poly-hedron 12 (1993) 931. 

[10] J.B. Foresman, M.J. Frisch, Exploring Chemistry  with Electronic Structure Methods, 2nd ed, 

Gaussian; Pittsburgh, 1996, p. 64.  

[11] S.F. Boys, R. Bernardi, Mol. Phys. 19 (1979) 553.  

[12] F.B. van Duijneveldt, J.G.C.M. van Duijneveldt-van de Rijt, J.H. van Lenthe, Chem. Rev. 94 (1994) 

1873.  

[13] E.D. Glendening, D. Feller, M.A. Thompson, J. Am. Chem. Soc. 116 (1994) 10657.  

[14] S.M. Smith, A.N. Markevitch, D.A. Romanov, X. Li, R.J. Levis, H.B. Schlegel, J. Phys. Chem. A 108 

(2004) 11063.  

[15] M.T. Rodgers, K.M. Ervin, P.B. Armentrout, J. Chem. Phys. 106 (1997) 4499.  

[16] D. Ray, D. Feller, M.B. More, E.D. Glendening, P.B. Armentrout, J. Phys. Chem. 100 (1996) 16116.  

[17] M.B. More, D. Ray, P.B. Armentrout, J. Phys. Chem. A 101 (1997) 831.  

[18] M.B. More, D. Ray, P.B. Armentrout, J. Phys. Chem. A 101 (1997) 4254.  

[19] M.B. More, D. Ray, P.B. Armentrout, J. Phys. Chem. A 101 (1997) 7007. 

[20] M.B. More, D. Ray, P.B. Armentrout, J. Am. Chem. Soc. 121 (1999) 417.  

[21] P.B. Armentrout, C.A. Austin, M.T. Rodgers, Int. J. Mass Spectrom. 330–332 (2012) 16.  

[22] C.A. Austin Y. Chen. M.T. Rodgers, Int. J. Mass Spectrom. 330–332 (2012) 27. 

[23] P.B. Armentrout, C.A. Austin, M.T. Rodgers, J. Phys. Chem. A DOI: 10.1021/jp4116172.  

[24] M.T. Rodgers, J. Phys. Chem. A 105 (2001) 2374.  

[25] Y. Chen, M.T. Rodgers, J. Am. Chem. Soc. 134 (2012) 2313.  
!



www.manaraa.com

! $$*!

!
[26] Y. Chen, M.T. Rodgers, J. Am. Chem. Soc. 134 (2012) 5863. 

[27] M.T. Rodgers, P.B. Armentrout, Mass Spectrom. Rev. 19 (2000) 215.  

[28] M.T. Rodgers, P.B. Armentrout, J. Phys. Chem. A 103 (1999) 4955. 

[29] J.R. Stanley, R. Amunugama, M.T. Rodgers, J. Am. Chem. Soc. 122 (2000) 10969.  

[30] M.T. Rodgers, P.B. Armentrout, Int. J. Mass Spectrom. 185/186/187 (1999) 359.   

[31] R, Luckay, T.E. Chantson, J.H. Reibenspies, R.D. Hancock, J. Chem. Soc., Dalton 8 (1995) 1363.  

[32] M. Morooka, S. Ohba, K. Toriumi, Acta Crystallogr. Sect. B 48 (1992) 459.  

[33] L. Ballester, A. Gutiérrez, M.F. Perpiñán, A.E. Sánchez, M. Fonari, M. Gdaniec, Inorg. Chem. 46 

(2007) 3946.  

[34] C. Ruan, H. Huang, M.T. Rodgers, J. Am. Soc. Mass Spectrom 19 (2008) 305.  

[35] C. Ruan, Z. Yang, M.T. Rodgers, Int. J. Mass Spectrom. 276 (2007) 233.  

[36] C. Ruan, H. Huang, M.T. Rodgers, J. Phys. Chem. A 111 (2007) 13521.  

[37] C. Ruan, Z. Yang, N. Hallowita, M.T. Rodgers, J. Phys. Chem. A 109 (2007) 11539.  

[38] P.B. Armentrout. Y. Chen, M.T. Rodgers, J. Phys. Chem. A 116 (2012) 3989.  

[39] P.B. Armentrout, M. Citir, Y. Chen, M.T. Rodgers, J. Phys. Chem. A 116 (2012) 11823. 

[40] P.B. Armentrout, B. Yang, M.T. Rodgers, J. Phys. Chem. A 117 (2013) 3771.  

[41] P.B. Armentrout, B. Yang, M.T. Rodgers, J. Phys. Chem. A 118 (2014) 4300. 

[42] Ionic radii are taken from: CRC Handbook of Chemistry and Physics; http://www.hbcpnetbase.com.  

[43] R.G. Wilson, G.R. Brewer, Ion Beams: With Applications to Ion Implantation; Wiley, New York, 

1973 p 118.  



www.manaraa.com

! ""#!

Table 5.1. Bond Dissociation Enthalpies of M+(18C6) Complexes at 0 K in kJ/mola 

M+ TCID  B3LYPb    MP2c   

  De D0
d D0,BSSE

d,e D0,BSSE
,e De D0

d D0,BSSE
d,e D0,BSSE

,e 

Na+ 296.2 (19.3) 332.1 324.0 322.4 341.8f 351.7 343.6 327.3 349.0 f 

  338.8 331.2 324.6  351.2 343.6 326.1  

K+ 234.5 (12.5) 279.1 272.0 269.0 284.9 f 313.9 306.8 282.4 301.3 f 

  283.4 276.2 272.4  303.9 296.8 281.4  

Rb+ 191.0 (12.5) 236.6 230.7 230.0 231.0 f 298.7 292.9 248.6 247.7 f 

  225.1 219.3 217.2  262.0 256.2 224.4  

Cs+ 167.9 (8.7) 204.4 198.5 197.7 186.6 f 261.0 255.2 227.5 207.5 f 

  183.2 178.4 176.0  224.5 219.7 189.6  
aTCID bond dissociation enthalpies of M+(18C6) complexes results from More et al. 
reference 36, uncertainties are listed in parentheses.  bCalculated at B3LYP/def2-
TZVPPD and B3LYP/6-311+G(2d,2p)_HW//B3LYP/6-31+G*_HW levels of theory. 
cCalculated at MP2(full)/def2-TZVPPD and MP2(full)/6-311+G(2d,2p)_ HW//B3LYP/ 6-
31+G*_HW  levels of theory.  dIncluding ZPE corrections with the B3LYP/6-
31+G*_HW and B3LYP/def2-TZVPPD frequencies scaled by a factor of 0.9804. eAlso 
includes BSSE corrections. fB3LYP/6-31+G(d) and MP2(full)/6-31+G(d)//B3LYP/6-
31+G(d) (bold) results from Glendening et. al. reference 37. 
 
 
 
Table 5.2. Fitting Parameters of Equation 1, Threshold Dissociation Energies at 0 K, and 
Entropies of Activation at 1000 K of M+(ha18C6) Complexesa 

aPresent results, uncertainties are listed in parentheses. bAverage values for a loose PSL 
TS. cNo RRKM analysis. 
!
!
!
!
!
!
!

M+ !0
b nb E0

 c
 

(eV) 
E0(PSL) b 

(eV) 
Kinetic Shift 

(eV) 
!S†(PSL) b      

(J mol-1•K•-1) 

Na+ 16.7 (2.2) 1.1 (0.1) 8.48 (0.08) 3.38 (0.13) 5.10 78 (2) 

K+ 6.71 (0.4) 1.0 (0.1) 5.13 (0.14) 2.30 (0.10) 2.83 58 (2) 

Rb+ 3.17 (0.3) 1.0 (0.1) 3.96 (0.05) 1.93 (0.08) 2.03 62 (2) 

Cs+ 1.77 (0.2) 1.5 (0.1) 2.68 (0.14) 1.55 (0.06) 1.13 60 (2) 
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Table 5.3. Bond Dissociation Enthalpies of M+(ha18C6) Complexes at 0 K in kJ/mola 

 B3LYPb   MP2c  M+  
TCID De D0

d D0,BSSE
d,e De D0

d D0,BSSE
d,e 

305.3 290.7 288.7 Na+ 325.8 (12.8) 

(396.1) (379.3) (377.2) 

343.5 328.9 299.6 

  311.4 297.0 289.1 342.5 322.5 295.5 

230.6 223.1 221.0 K+  221.8 (9.3) 

(273.0) (264.8)  

263.9 256.4 232.1 

  234.3 227.3 224.1 259.4 246.9 232.3 

184.7 178.9 177.5 Rb+ 186.1 (7.8) 

(237.8) (231.5) (230.8) 

245.5 239.7 194.3 

  170.2 163.2 161.0 208.5 193.6 165.2 

149.8 145.0 143.3 Cs+ 149.0 (5.8) 

   

205.8 201.0 172.7 

  132.3 123.8 121.7 187.2 173.2 146.1 

MADf 8.9 (3.0) g   13.1 (16.4)   16.8 (9.4) 

    22.9 (14.6)   16.2 (12.0) 
aPresent results, uncertainties are listed in parentheses.  bCalculated at B3LYP/def2-
TZVPPD and B3LYP/6-311+G(2d,2p)_HW//B3LYP/6-31+G*_HW levels of theory. 
cCalculated at MP2(full)/def2-TZVPPD//B3LYP/def2-TZVPPD and MP2(full)/6-
311+G(2d,2p)_HW //B3LYP/ 6-31+G*_HW  levels of theory.  dIncluding ZPE 
corrections with the B3LYP/6-31+G*_HW and B3LYP/def2-TZVPPD frequencies 
scaled by a factor of 0.9804. eAlso includes BSSE corrections. fMean absolute deviation. 
gAverage experimental uncertainty. 
 
 
 
Table 5.4. Bond Dissociation Enthalpies of M+(ha18C6) Complexes at 0 K in kJ/mol 
using Polarizable Continuum Model for Water and Acetonitrile.a 

 H20   ACN   
M+ 

 
conformer De D0

b D0,BSSE
c De D0

b D0,BSSE
c 

Na+ Na3(6N) 18.2 7.8 5.8 23.3 12.5 10.5 

K+ K1(6N) 34.8 31.0 27.7 38.0 34.7 31.5 

Rb+ Rb1(6N) 12.1 10.5 9.8 - - - 
aCalculated at B3LYP/def2-TZVPPD level of theory. bIncluding ZPE corrections with 
the B3LYP/def2-TZVPPD frequencies scaled by a factor of 0.9804. cAlso includes BSSE 
corrections.  
!
!
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Table 5.5. Geometrical Parameters of the B3LYP/def2-TZVPPD Optimized Structures of 
Neutral ha18C6 and the M+(ha18C6) Complexesa 

M+ Conformer r(M–N) 
(Å) 

!NMN  

(°) 
!NCCN  

(°) 
!HNCC  

(°) 
!CNCC  

(°) 
!NMNH  

(°) 
r(C–N)  

Å 
r(N–H)  

Å 
18N6 C3v - - 66.5 55.6 177.0 - 1.455 1.016 
Na+ Na1(6N) 2.918 60.8  62.8  62.8 177.7 98.6 1.464 1.016 

 Na2(6N) 2.943 58.6  55.5  75.6 164.3 83.3 1.468 1.014 
 Na3(6N) 2.571 71.8  58.2  127.3 112.0 120.1 1.470 1.012 
 Na4(6N) 2.428 77.9  49.8  151.4 86.6 127.3 1.472 1.010 

K+ K1(6N) 2.991 61.0  68.0  64.9 175.0 99.7 1.466 1.016 
 K2(6N) 3.153 54.7  56.0  69.7 170.3 77.1 1.467 1.012 
 K3(6N) 2.847 65.4  59.1  124.1 111.1 118.9 1.470 1.011 
 K4(6N) 2.642 74.3  48.7  145.8 90.3 124.1 1.475 1.009 

Rb+ Rb1(6N) 3.082 59.9  70.5  65.3 174.0 100.1 1.467 1.015 
 Rb2(3N) 3.200 51.6  56.6  66.8 173.2 74.0 1.466 1.014 
 Rb3(4,2N) 3.123 58.2  57.9  122.8 110.0 115.4 1.470 1.012 
 Rb4(6N) 2.756 72.2  46.9  140.7 94.0 122.0 1.477 1.007 

Cs+ Cs1(6N) 3.246 56.3  69.2  64.1 171.3 99.5 1.466 1.015 
 Cs2(3N) 3.362 49.0  57.2  64.9 175.0 72.0 1.465 1.014 
 Cs3(2,2N) 3.381 50.1  59.0  81.3 151.7 123.9 1.468 1.013 
 Cs4(6N) 2.875 69.3  42.6  129.3 103.4 118.4 1.479 1.006 

aAverage values are given for similar bond distances or angles, and represents the 
absolute average.  
!
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5.8. Figure Captions 

 

Figure 5.1. Structure of hexacyclen (ha18C6, 1,4,7,10,13,16-hexaazacyclooctadecane).  

B3LYP/def2-TZVPPD optimized structures and relative energies at 0 K (in kJ/mol) of 

the stable low-energy conformations of ha18C6. The calculated dipole moments (µ) are 

also shown.  
 

Figure 5.2.  Cross section for collision-induced dissociation of K+(ha18C6) with Xe as a 

function of kinetic energy in the center-of-mass frame (lower x-axis) and the laboratory 

frame (upper x-axis).  Data are shown for a Xe pressure of ~0.2 mTorr, part a.  Zero-

pressure extrapolated cross section for collision-induced dissociation of the K+(ha18C6) 

complex with Xe in the threshold region as a function of kinetic energy in the center-of-

mass frame (lower x-axis) and the laboratory frame (upper x-axis).  The solid line shows 

the best fit to the data using the model of eq 2.4 convoluted over the neutral and ion 

kinetic and internal energy distributions.  The dashed line shows the model cross section 

in the absence of experimental kinetic energy broadening for reactants with an internal 

energy of 0 K, part b. 
 

Figure 5.3. Cross sections for collision-induced dissociation of M+(ha18C6) complexes, 

where M+ = Na+, Rb+, and Cs+, with Xe as a function of kinetic energy in the center-of-

mass frame (lower x-axis) and the laboratory frame (upper x-axis).  Data are shown for a 

Xe pressure of ~0.2 mTorr, parts a-c, respectively. Zero-pressure extrapolated cross 

sections for collision-induced dissociation of M+(ha18C6) complexes, where M+ = Na+. 

Rb+, and Cs+, parts d-f respectively. The solid lines show the best fits to the data using 

the model of eq 2.4 convoluted over the neutral and ion kinetic and internal energy 

distributions.  The dashed lines show the model cross sections in the absence of 

experimental kinetic energy broadening for reactants with an internal energy of 0 K. 
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Figure 5.4.  B3LYP/def2-TZVPPD optimized geometries and relative free energies at 

298 K (in kJ/mol) of the stable low-energy conformers of the K+(ha18C6).  

 

Figure 5.5.  B3LYP/def2-TZVPPD optimized geometries and relative free energies at 

298 K (in kJ/mol) of the stable low-energy conformers of the Na+(ha18C6).  

 

Figure 5.6.  B3LYP/def2-TZVPPD optimized geometries and relative free energies at 

298 K (in kJ/mol) of the stable low-energy conformers of the Rb+(ha18C6).  

 

Figure 5.7.  B3LYP/def2-TZVPPD optimized geometries and relative free energies at 

298 K (in kJ/mol) of the stable low-energy conformers of the Cs+(ha18C6).  

 

Figure 5.8.  MP2(full) and B3LYP calculated versus TCID measured M+!ha18C6 BDEs 

at 0 K (in kJ/mol), where M+ = Na+, K+, Rb+, and Cs+.  Single point energies calculated 

using the def2-TZVPPD (part a) and 6-311+G(2d,2p)_HW (part b) optimized geometries 

of the ground-state conformers.  All values are determined here and taken from Table 

5.3. 

 

Figure 5.9. BDEs at 298 K (in kJ/mol) of the M+(ha18C6) and M+(18C6) complexes 

plotted versus the ionic radius of M+, part a.  Ionic radii are taken from reference 34.  

Comparison of TCID measured and B3LYP/def2-TZVPPD calculated M+!ha18C6 and 

M+!18C6 BDEs at 0 K (in kJ/mol), where M+ = Na+, K+, Rb+, and Cs+, part b.  All values 

for the M+(ha18C6) complexes are determined here and taken from Table 5.3.  

Calculated values for the the M+!18C6 BDEs are taken from Table 5.1.  Measured 

values for the M+!18C6 BDEs are taken from reference 20. 
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Figure 5.10.  BDEs at 298 K (in kJ/mol) of the M+(ha18C6) and M+(ta12C4) complexes 

plotted versus the ionic radius of M+, part a.  Ionic radii are taken from reference 34.  

Comparison of TCID measured and B3LYP/def2-TZVPPD and MP2/def2-TZVPPD 

calculated M+!ha18C6 and M+!12N4 BDEs at 0 K (in kJ/mol), where M+ = Na+, K+, 

Rb+, and Cs+, part b. All values for the M+(ha18C6) complexes are determined here and 

taken from Table 5.3. Values for the M+!ta12C4 BDEs are taken from reference 22.  The 

solid line indicates values for which the M+!ha18C6 and M+!ta12C4 are equal, whereas 

the dashed line indicates values for which the M+!ha18C6 BDEs exceed those of M+! 

ta12C4  by 50 %. 
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CHAPTER 6 
ALKALI METAL CATION – DIAZA-18-CROWN-6: EFFECTS OF ALKALI 
METAL CATION SIZE ON THE STRUCTURE AND BINDING ENERGIES 

Portions of this chapter were reprinted with permission Austin, C.A. and Rodgers, M.T. 

Intrinsic Affinities of Alkali Metal Cations for Diaza-18-Crown-6: Effects of Alkali 

Metal Cation Size and Donor Atoms on the Binding Energies. Int. J. Mass Spectrom. 

dx.doi.org/10.1016/j.ijms.2014.06.033. 
 

 

6.1. Introduction 

There is considerable interest in the diaza-18-crown-6 (da18C6) ligand because it 

exhibits selectivity for specific metal cations, such as Ag+. As its name suggests, diaza-

18-crown-6 is an 18-crown-6 (18C6) analog where two of the oxygen donor atoms have 

been replaced by nitrogen donor atoms as shown in Figure 6.1. The properties attributed 

to the presence of two types of donor atoms symmetrically placed in the macrocycle have 

been investigated using solution phase methods [1]. The da18C6 ligand exhibits binding 

to the alkali and alkaline earth metal cations as well as transitions metal cations such as 

Cu+ and Ag+ in methanol and acetonitrile solutions [1–3]. The stability of metal cation–

da18C6 complexes decreases in aqueous solution due to competition between the metal 

cation binding to da18C6 versus the water molecules. The stability of metal cation–

da18C6 complexes increases with cage-functionalization of the da18C6 ligand as 

illustrated for alkali metal picrate extraction experiments [4], where the relative binding 

follows the order K+ > Na+ > Rb+ > Cs+ > Li+. Using conductometric measurements, 

Aprano and Sesta found the relative binding order of the alkali metal cations to da18C6 

in solution: K+ > Na+ > Cs+ [2], consistent with the alkali picrate complexes. 

Brodbelt and co-workers investigated the binding selectivity of da18C6 to the 

alkali metal cations in the gas phase using micro-electrospray ionization (MESI) coupled 

with quadrupole ion trap mass spectrometry analyses, where the relative order of alkali 
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metal cation binding was found to parallel the solution phase trend, K+ > Na+ > Rb+ [5]. 

A similar study investigated the competitive binding selectivity of the alkali metal cations 

in the presence of transition metal cations and showed that in methanol, da18C6 

preferentially binds Cu2+ over Co2+, and K+ over Na+[6]. Theoretical investigations of the 

interactions of da18C6 with Na+, K+ [7], and Ag+ [8], have been reported, whereas no 

work on the interactions of Rb+ and Cs+ with da18C6 has been published. There is 

relatively little quantitative [9] or theoretical data on the intrinsic interactions between the 

larger alkali metal cations and organic molecules. However, because Rb+ and Cs+ share 

chemical similarity to K+ [10] and can bind to the same sites [11], but accumulate at 

different rates, Rb+ and Cs+ are used for medical imaging and cancer treatment [12–14]. 

To further extend the studies of molecular recognition of metal cations by 

macrocyclic ligands, accurate binding energies were measured for the M+(da18C6) 

complexes of the alkali metal cations Na+, K+, Rb+, and Cs+ and compared to theoretical 

estimates. Results for the M+(da18C6) complexes are also compared to the analogous 

M+(1 8C6) and M+(ha18C6) complexes to elucidate the influence of the donor atoms (O 

versus N) on the nature and strength of binding. 

 

6.2. Collision–Induced Dissociation Experiments 

Cross sections for collision-induced dissociation (CID) of four M+(da18C6) 

complexes, where M+ = Na+, K+, Rb+, and Cs+, are measured using a guided ion beam 

tandem mass spectrometer that has been described in detail Chapter 2. The M+(da18C6) 

complexes are generated by electrospray ionization (ESI) [ 15 ].  Thermochemical 

analyses of the experimental results are explicitly discussed in Chapter 2. 

 

 

 

6.3. Theoretical Calculations 
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To obtain model structures, vibrational frequencies, rotational constants, and 

energetics for the neutral da18C6 ligand and the M+(da18C6) complexes, molecular 

dynamics simulated annealing procedures and ab initio and density functional theory 

calculations were performed using Hyperchem [16] and the Gaussian 09 suite of 

programs [17], respectively, and are describe in detail in Chapter 2.  Starting structures 

for the M+(da18C6) complexes are generated using four of the six low-energy neutral 

da18C6 structures (C1, C2, C3 and C6), as they are expected to provide the most 

favorable geometries for interaction with the alkali metal cation, and placing the alkali 

metal cation in the center of the macrocyclic ring of da18C6. 

 Vibrational analyses of the geometry-optimized structures were performed to 

determine the vibrational frequencies of the neutral da18C6 ligand and M+(da18C6) 

complexes. When used to model the data or to calculate thermal energy corrections, the 

computed frequencies were scaled by a factor of 0.9804 [18].  Single-point energy 

calculations were performed at the B3LYP and MP2(full) levels of theory using 6-

311+G(2d,2p)_HW and def2-TZVPPD basis sets and the B3LYP/6-31+G* _HW and 

B3LYP/def2-TZVPPD optimized geometries, respectively. To obtain accurate BDEs, 

zero-point energy (ZPE) corrections scaled by 0.98 were applied, and basis set 

superposition errors (BSSE) were subtracted from the computed BDEs in the full 

counterpoise correction [19,20].  The BSSE corrections are much smaller for B3LYP 

than MP2(full) calculations. The polarizabilities for the stable low-energy conformers of 

ha18C6 were calculated at the PBE0/6-311+G(2d,2p) level of theory using the B3LYP/6-

31+G* optimized geometries. This level of theory has been shown to accurately 

reproduce experimental polarizabilities [21]. In addition, the polarizabilities for the stable 

low-energy conformers of ha18C6 were also calculated at the PBE0/def2-TZVPPD level 

of theory. 

 Several of the optimized structures of the M+(da18C6) complexes exhibit 

imaginary frequencies. Attempts were made to eliminate imaginary frequencies by 
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additional cycles of simulated annealing at 298 K, as well as by moving the metal cation 

along the path associated with the corresponding mode and re-optimizing. But even with 

tight convergence, several structures consistently converged to the same conformer with 

an imaginary frequency. 

 

6.4. Results 

6.4.1. Cross Sections for Collision–Induced Dissociation 

Cross sections are measured for the collision-induced dissociation (CID) of four 

M+(da18C6) complexes with Xe, where M+ = Na+, K+, Rb+, and Cs+. Figure 6.2 shows 

representative data for the Rb+(da18C6) complex. The complexes to Na+, K+, and Cs+ 

exhibit similar relative behavior and are provided as Figure 6.3. In all cases, the alkali 

metal cation is the only ionic product observed corresponding to endothermic loss of the 

intact da18C6 ligand in the CID reactions 6.1.  

 

M+(da18C6)  +  Xe  !  M+  +  da18C6  +  Xe     (6.1) 

 

The magnitudes of the CID cross sections generally decrease and the apparent thresholds 

increase as the size of the alkali metal cation increases, consistent with the trend expected 

for binding based primarily on electrostatic interactions [22]. 

 

6.4.2. Threshold Analysis 

Thresholds for CID reactions 6.1 are determined using the model of Eq. 2.4 for 

four M+(da18C6) complexes. Results of these threshold analyses are given in Table 6.1. 

A representative analysis is shown in Figure 6.2 for the Rb+(da18C6) complex, whereas 

an analogous set of figures for the complexes to Na+, K+, and Cs+ are provided as Figure 

6.3. The loose PSL TS accurately reproduces the experimental cross sections for CID 

reactions 6.1 for all four M+(da18C6) complexes [23]. For noncovalently bound metal-
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ligand complexes, the loose PSL TS model provides the most accurate assessment of the 

kinetic shifts for CID processes [24–32]. The CID cross sections of the M+(da18C6) 

complexes are reproduced over energy ranges exceeding 5.0 eV and cross section 

magnitudes of at least a factor of 1000 for the M+(da1 8C6) complexes. Table 6.1 also 

includes threshold values, E0, obtained without including the RRKM lifetime analysis. A 

measure of the kinetic shifts for the M+(da18C6) systems is obtained by taking the 

difference of the E0 and E0(PSL), which increase from 1.31 eV for the Cs+(da18C6) 

complex to 4.42 eV for the Na+(da18C6) complex. All of the M+(da18C6) complexes 

possess the same number of vibrational modes, so the observed kinetic shifts should 

directly correlate with the measured M+-da18C6 BDE, as observed (Table 6.1). The 

entropy of activation, !S*, is a measure of the looseness of the TS, but also depends on 

the threshold energy. The !S*(PSL) values for these systems at 1000 K exhibit modest 

variation, as expected on the basis of the similarity of these systems, and vary between 58 

and 66 J K-1 mol-1. These entropies of activation compare favorably to those previously 

determined for a wide variety of noncovalently bound complexes that dissociate via 

simple noncovalent bond cleavage [24–32]. 

 

6.4.3. Theoretical Results 

The ground-state and stable low-energy conformations of the da1 8C6 ligand and 

M+(da18C6) complexes are calculated as described in the Chapter 2. M+-da18C6 BDEs 

calculated at the B3 LYP and MP2(full) levels of theory using the def2-TZVPPD basis 

set and the B3LYP/def2-TZVPPD optimized geometries are summarized in Table 6.2. 

Also included are values calculated at the B3LYP and MP2(full) levels of theory using 

the B3LYP/6-311+ G(2d,2p)_HW basis set and the B3LYP/6–31+G*_HW optimized 

geometries. ZPE and BSSE corrections are also included in the computed BDEs. 

 

6.4.3.1. Neutral da18C6  
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Low -energy structures of the neutral da18C6 ligand are calculated as described 

above and shown in Figure. 6.1. Six distinct stable geometries are found. The various 

conformations of the neutral da18C6 ligand are designated based on their relative Gibbs 

free energies and the symmetry of the da18C6 ligand. Previous studies of the analogous 

M+(ha18C6) complexes [24] and the smaller M+(ta12C4) complexes [25] suggest 

energetics computed using the B3LYP/def2-TZVPPD level of theory are the most 

reliable among the levels of theory examined here. Therefore, the following discussion 

focuses on the geometries and energetics calculated at the B3LYP/def2-TZVPPD level of 

theory unless otherwise noted. The ground-state conformation C1 of neutral da18C6 

adopts C2h symmetry, where the amine and oxygen donor atoms alternate up and down, 

whereas the hydrogen atoms of the amine donors are oriented toward the cavity of the 

macrocyclic ring with "HNCC dihedral angles of 56.4°. The local dipoles are anti-

aligned for the C1(C2h) conformer leading to cancellation, and no net dipole moment. 

This conformation of da18C6 was previously reported as the ground-state by Freidzon et 

al. [8]. Two additional higher-energy conformers similar to the C1(C2h) conformer are 

found, C3(Cs) and C6(C2h), which lie 18.4 and 40.7 kJ/mol higher in free energy, 

respectively. The major difference between the C3 and C6 conformations and the ground-

state conformation is the position of the amino hydrogen atoms. For the C3 conformer, 

the average "HNCC dihedral angle is 56.5°, whereas for the C6 conformer, the average 

"HNCC dihedral angle is somewhat smaller, 50.9°. Similar to the C1 conformer, the 

local dipoles of the C6 conformer are anti-aligned leading to cancellation, and no net 

dipole moment, whereas the C3 conformer exhibits a large dipole moment of 1.456 D. 

The C2(C1) conformer is the second most stable conformer and is calculated to lie 18.0 

kJ/mol higher in free energy as compared to the ground state. The C2 conformer is 

similar to the ground-state C1 conformer, the major difference being the ring of donor 

atoms is distorted from planarity. The C1, C2, C3, and C6 conformers of da18C6 adopt 

geometries similar to those observed when the macrocycle is complexed to a metal 
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cation. In contrast, the C4(Ci) and C5(Ci) conformers adopt more rectangular geometries, 

similar to the ground-state determined for the 18C6 ligand [26], and are calculated to lie 

29.3 and 31.4 kJ/mol higher in free energy than the ground-state C1 conformer. The C4 

conformer was also identified by Freidzon et al. and calculated to lie 25.9 kJ mol higher 

in free energy than the ground-state C1 conformer using density functional methods with 

the PBE functional [8]. 

 

6.4.3.2. M+(da18C6) 

The ground-state and low-energy structures of the Rb+(da18C6) complex 

optimized at the B3LYP/def2-TZVPPD level of theory are shown in Figure 6.4. Similar 

conformations are also found for the complexes to the other alkali metal cations 

investigated and are shown as Figure 6.5–6.7. The nomenclature employed to describe 

these structures is of the form Mx(symmetry), where M identifies the metal cation, x 

indicates the relative order of stability among the low-energy conformers of the K+(da1 

8C6) complexes, and the symmetry is that of the ligand in its uncomplexed form. The 

ground-state conformation of the M+(da18C6) complexes at 0 K determined at the 

B3LYP and MP2(full) levels of theory using the def2-TZVPPD basis set are very similar 

for the K+, Rb+, and Cs+ complexes, compare Figures 6.4, 6.6–6.7, and 6.8. Although the 

analogous structure for the Na+(da18C6) complex is calculated to be the most stable 

among those computed, this structure possesses an imaginary frequency and thus is not 

the true global minimum, but likely is very similar to the ground-state structure, and is 

therefore used as the ground-state structure for data analysis procedures and calculation 

of the Na+-da18C6 BDE. The M1 conformer is calculated to be the lowest energy 

conformation for the alkali metal cations interaction with da18C6, Figure 6.8. The M1 

conformer encapsulates the Na+, K+, and Rb+ cations in the cavity created by the oxygen 

and nitrogen donor atoms. In contrast, the Cs+ cation is too large to fit in the cavity and 

sits above the center of the macrocyclic ring, see Figures 6.4–6.7. In the M1 conformers, 
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the da18C6 ligand is only slightly distorted from its ground-state conformation in the 

absence of the metal cation, with the largest differences being observed for the 

Na+(da18C6) complex. In the M2 conformers, the metal cation sits above the plane 

created by oxygen donor atoms for all metal cations except Na+. The M2 conformers are 

the only conformers where the amine hydrogen atoms are located on the same side of the 

macrocyclic backbone. The Na+ cation only interacts with four of the donor atoms, 

whereas the larger alkali metal cations interact with all six donor atoms. M3 and M4 

conformations adopt a hexagonal geometry (such that the ring created by the O and N 

donor atoms is nearly planar) upon binding of the large cations K+, Rb+, and Cs+. The 

donor atoms of the macrocyclic rings of the M3 and M4 conformations distort from 

planarity to enable encapsulation or tighter binding to the Na+ cation in a trigonal 

prismatic geometry. 

 

6.4.3.2.1. K+(da18C6) and Rb+(da18C6) 

In the ground-state M1(C2h) conformations of K+(da18C6) and Rb+(da18C6) the 

metal cation sits in the center of the plane created by the oxygen and nitrogen donor 

atoms, see Figure 6.4 and 6.6. The average Rb+–O 351 and Rb+–N bond distances for the 

Rb+(da18C6) complex are 2.946 Å and 3.060 Å, respectively, with corresponding 

average "ORb+O and "NRb+O angles of 58.0° and 59.2°, respectively (Table 6.3). 

Interestingly, the ground-state K1 conformer exhibits K+–O (2.842 Å) bond distances that 

are longer than the average K+–O bond distances for the K2(Cs) and K3(Cs) conformers, 

whereas the K+–N (2.943 Å) bond distances are intermediate between those of the K2 

and K3 conformers. In both the K2(Cs) and Rb2(Cs) conformers, the metal cation sits 

slightly above the plane created by the oxygen and nitrogen donor atoms. These M2 

conformers are calculated to lie 15.3 and 23.2 kJ/mol higher in free energy than the 

ground-state M1 conformers, respectively. For the K3(Cs) and Rb3(Cs) conformers, the 

metal cation strongly interacts with the four oxygen donor atoms with corresponding 
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average M+–O bond distances of 2.786 Å and 3.004 Å, respectively, and only weakly 

interacts with the two nitrogen donor atoms with corresponding average M+–N bond 

distances of 2.986 Å and 3.180 Å, respectively. The K3 conformer is calculated to lie 

29.4 kJ/mol higher in free energy, whereas the Rb3 is calculated to lie 21.2 kJ/mol higher 

in free energy than the ground-state M1 conformers. The M4(C2h) conformers exhibit the 

shortest M+–O and M+–N bond distances compared to the M1, M2, and M3 conformers. 

The K4 conformer is calculated to lie 57.6 kJ/mol higher in free energy than the ground-

state K1 conformer and possesses two imaginary frequencies associated with NH 

wagging with the metal cation moving up and down in the center of the macrocycle, 

whereas the other imaginary frequency corresponds to wagging of the C–C skeletal 

backbone. In contrast, the Rb4 conformer is calculated to lie 60.1 kJ/mol higher in free 

energy than the ground-state Rb1 conformer and possesses a single imaginary frequency 

associated with the metal cation moving up and down in the center of the macrocycle. 

 

6.4.3.2.2. Cs+(da18C6)  

The ground-state Cs1(Cs) conformer of the Cs+(da18C6) complex parallels that 

found for the analogous complexes of K+ and Rb+, however more significant distortions 

of the da18C6 ligand lead to a reduction in symmetry from C2h to Cs. The Cs+ cation sits 

slightly above the plane of the donor atoms as it is too large to fit in the cavity of da18C6, 

see Figure 6.7. The next most stable conformer, Cs2(Cs), is very similar. The Cs+ cation 

again lies above the plane of the oxygen and nitrogen donor atoms, with slightly longer 

Cs+–O and Cs+–N average bond distances of 3.151 Å and 3.188 Å, respectively, than 

found in the Cs1 conformer and is calculated to lie 8.0 higher in free energy. The next 

most stable conformer, Cs3(Cs), is calculated to lie 14.3 kJ/mol higher in free energy than 

the ground-state Cs1 conformer. However, in the Cs3 conformer, the Cs+ cation strongly 

interacts with the four oxygen donor atoms with corresponding average Cs+–O bond 

distances of 3.146 Å, and interacts weakly with the two nitrogen donor atoms with 



www.manaraa.com

! "$+!

corresponding average Cs+–N bond distances of 3.330 Å, parallel to that found for 

K3(Cs) and Rb3(Cs). The Cs4(C2h) conformer exhibits the shortest Cs+–O and Cs+–N 

401 bond distances, but possesses an imaginary frequency that  involves translation of the 

Cs+ cation up and down in the center of the macrocyclic ring, similar to that found for the 

Rb4(C2h) conformer. The Cs4 conformer is calculated to lie 89.4 kJ/mol higher in free 

energy than the ground-state Cs1 conformer, with corresponding Cs+–O and Cs+–N 

average bond distances of 2.966 Å and 3.063 Å, respectively.  

 

6.4.3.2.3. Na+(da18C6)  

The low-energy conformers of the Na+(da18C6) complex at the B3LYP level of 

theory parallel those found for the complexes to the larger alkali metal cations, Figures 

6.5 and 6.8. However, the most stable conformer computed, Na1(C2h), is not a true 

minimum as it possesses one imaginary frequency associated with the Na+ cation moving 

back and forth in the plane of the oxygen and nitrogen donor atoms. The average Na+–O 

(2.833 Å) and Na+–N (2.755 Å) bond distances are significantly larger for the Na1 

conformer than the other stable conformers computed. The average Na+–O bond distance 

is longer than the average Na+–N bond distance, whereas the Na+–O bond distances are 

smaller than the Na+–N bond distances in the other low-energy conformers of 

Na+(da18C6). The next most stable conformer of the Na+(da18C6) complex is found to 

have C1 symmetry, Na2(C1), where the skeletal backbone exhibits much greater 

deviations from planarity than in the analogous complexes to the larger alkali metal 

cations, and is calculated to lie 6.7 kJ/mol higher in free energy than the Na1 conformer. 

The Na+ cation binds to only four of the donor atoms with corresponding Na+–O and 

Na+–N average bond distances of 2.436 Å and 2.504 Å, respectively. The next most 

stable conformer, Na3(C1), exhibits average Na+–O 429 and Na+–N bond distances of 

2.480 Å and 2.553 Å, respectively, longer than those of the Na2 ground-state conformer, 

and is calculated to be 20.5 kJ/mol less stable. Parallel to that found for the M4(C2h) 
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conformers of the larger alkali metal cations, the shortest average bond distances are 

found for the Na4(C2h) conformer. In contrast to the complexes to the larger alkali metal 

cations, the Na4 conformer has no imaginary frequencies. The Na4 conformer exhibits 

Na+–O and Na+–N average bond distances of 2.326 Å and 2.499 Å, respectively, and lies 

53.1 kJ/mol higher in free energy than the Na1 conformer.   

 

6.5. Discussion 

6.5.1. Comparison of Theory and Experiment 

The experimentally measured and theoretically calculated M+–da18C6 BDEs are 

summarized in Table 6.2, whereas the agreement between the calculated and measured 

BDEs is illustrated in Figure 6.9. As can be seen in the figure, the B3LYP/def2-TZVPPD 

values exhibit very good agreement with the measured values. The mean absolute 

deviation (MAD) between theory and experiment is 4.5 ± 2.4 kJ/mol, and is roughly half 

the average experimental uncertainty (AEU) in these values, 10.4 ± 5.1 kJ/mol. The 

agreement between B3LYP/6-311+G(2d,2p)_HW theory and the measured M+–da18C6 

BDEs is not as good, Table 6.2 and Figure 6.9, where the MAD is 9.8 ± 8.5 kJ/mol. 

When the measured BDEs are compared to the those calculated at the MP2(full)/def2-

TZVPPD level of theory, the MAD is 17.1 ± 12.0 kJ/mol, almost double the AEU in 

these values. In contrast, the MAD improves to 6.5 ± 5.2 kJ/mol for values calculated at 

the MP2(full)/6-311+G(2d,dp)_HW level of theory, which compares well to the AEU in 

these values. Clearly, the best agreement between the measured and calculated M+-

da18C6 BDEs is found for the B3LYP/def2-TZVPPD results for all four alkali metal 

cations. In contrast, at the MP2(full)/def2-TZVPPD level of theory, the calculated BDEs 

are systematically high except for the Na+(da18C6) complex, where excellent agreement 

is found. 

 

6.5.2. Trends in the Binding of Alkali Metal Cations to da18C6 
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The measured M+-da18C6 BDEs at 0 K are summarized in Table 6.2 and shown 

pictorially in Figure 6.9. As the size of the alkali metal cation increases from Na+ to Cs+, 

the M+–da18C6 BDEs are found to decrease monotonically, similar to behavior observed 

for many alkali metal cation-ligand complexes [22, 24–39]. This is the expected trend for 

binding based primarily on electrostatic interactions, because the increasing size of the 

alkali metal cation leads to longer metal-ligand bond distances [40]. The relative change 

in the ionic radii for the alkali metal cations becomes smaller with increasing size of the 

cation such that the difference in the M+-da18C6 BDEs for adjacent metal cations 

becomes smaller as the size of the metal cation increases from Na+ to Cs+. The relative 

trend in the gas phase for alkali metal cation binding to da18C6, Na+ > K+ > Rb+ > Cs+, 

differs from that observed in competitive solution phase binding, where da18C6 shows 

selectivity in the order of K+ > Na+ > Rb+ > Cs+ as a result of competition with between 

the solvent and da18C6 ligand for binding to the alkali metal cations in solution [2-4]. 

 

6.5.3. Comparison with 18C6 

The TCID measured and B3LYP/def2-TZVPPD and MP2(full)/def2-TZVPPD 

calculated M+-da18C6 and M+-18C6 BDEs [24,26] are compared in Figure 6.10a. 

Experimentally, alkali metal cation interactions with da18C6 and 18C6 are equal within 

experimental error, but do suggest a very minor enhancement in the binding of the larger 

alkali metal cations to 18C6. In contrast, both the B3LYP and MP2(full) levels of theory 

suggest that the alkali metal cations bind to 18C6 more strongly than da18C6, and that 

the preference for18C6 should increase slightly with the size of the alkali metal cation. 

Similar results were found for ha18C6, where theory suggests that the alkali metal cations 

should bind to 18C6 more strongly than ha18C6 and that the preference for 18C6 should 

increase with the size of the alkali metal cation [24]. Combining the results of these two 

studies suggest that theory either overestimates the strength of interaction with oxygen 

donor atoms or underestimates the strength of binding to nitrogen donor atoms. 
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6.5.4. Comparison with ha18C6 

The measured and B3LYP/def2-TZVPPD calculated M+-da18C6 and M+-ha18C6 

BDEs [24] are compared in Figure 6.10b. Experimentally, preferential binding of Na+ to 

ha18C6 over da18C6 is observed, whereas theory suggests that the binding is equivalent. 

In contrast, both B3LYP and MP2(full) theory suggest that the larger alkali metal cations 

preferentially bind to da18C6 over ha18C6. This trend is very well reproduced in the 

experiments, where the larger alkali metal cations are found to bind to da18C6 slightly 

more strongly than ha18C6. However, the differences are small and within experimental 

error for all cations except Cs+. 

 

6.6. Conclusions 

Thresholds for the loss of the intact da18C6 ligand determined from the kinetic 

energy dependence of the collision-induced dissociation of four M+(da18C6) complexes, 

where M+ = Na+, K+, Rb+, and Cs+, with Xe were determined. The effects of the kinetic 

and internal energy distributions of the M+(da18C6) and Xe reactants, multiple collisions 

with Xe, and the lifetime of the activated M+(da18C6) complexes using a loose PSL TS 

model were carefully considered to ensure accurate modeling of the experimental data. 

Theoretical calculations were performed at several levels of theory; B3LYP/def2-

TZVPPD provided the best results and was therefore used for data analysis. Excellent 

agreement between the B3LYP/def2-TZVPPD calculated and experimentally determined 

BDEs was found for all four complexes, similar to the M+(ta12C4) [25] and M+(ha18C6) 

[24] complexes investigated using parallel approaches. Trends based primarily on 

electrostatic interactions were observed for the measured and theoretically calculated M+-

da18C6 BDEs. The BDEs decreased monotonically as the size of the alkali metal cation 

increases, whereas solution phase trends follow the order of K+ > Na+ > Rb+ > Cs+ as a 

result of competitive binding between the macrocycle and solvent. Preferential binding of 
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Na+ to ha18C6 over da18C6 and 18C6 was observed, whereas the larger alkali metal 

cations exhibit a small preference for da18C6 and 18C6 versus ha18C6. Results 

suggested that the B3LYP and MP2(full) levels of theory either overestimate the strength 

of interaction to the oxygen donor atoms or underestimate the strength of binding to 

nitrogen donor atoms. 
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Table 6.1. Fitting Parameters of Equation (S1), Threshold Dissociation Energies at 0 K, and 
Entropies of Activation at 1000 K of M+(da18C6) Complexesa 

aPresent results, uncertainties are listed in parentheses. Average values for a loose PSL TS. bNo 
RRKM analysis. 
 
 
Table 6.2. Bond Dissociation Enthalpies of M+(da18C6) Complexes at 0 K in kJ/mola 

 B3LYPb   MP2c  M+  
TCID De D0

d D0,BSSE
d,e De D0

d D0,BSSE
d,e 

Na+ 296.4 (17.7) 300.7 290.1 288.4 327.0 316.4 294.2 

  307.6 297.0 289.5 322.1 311.5 289.1 

K+  230.5 (10.1) 245.8 239.1 236.0 282.9 276.2 251.8 

  250.5 244.0 240.5 273.5 266.9 252.0 

Rb+ 192.0 (7.3) 201.8 196.6 196.0 266.5 261.3 216.5 

  190.3 184.9 182.9 230.0 224.6 191.8 

Cs+ 160.6 (6.5) 145.8 158.0 157.5 227.8 217.4 189.4 

  132.3 141.6 139.1 189.7 184.3 154.9 

MADf 10.4 (5.1) g   5.2 (2.1)   19.2 (11.1) 

    11.9 (6.6)   8.6 (9.0) 
aPresent results, uncertainties are listed in parentheses.  bCalculated at B3LYP/def2-TZVPPD 
and B3LYP/6-311+G(2d,2p)_HW//B3LYP/6-31+G*_HW levels of theory. cCalculated at 
MP2(full)/def2-TZVPPD//B3LYP/def2-TZVPPD and MP2(full)/6-311+G(2d,2p)_HW //B3LYP/ 
6-31+G*_HW  levels of theory.  dIncluding ZPE corrections with the B3LYP/6-31+G*_HW and 
B3LYP/def2-TZVPPD frequencies scaled by a factor of 0.9804. eAlso includes BSSE 
corrections. fMean absolute deviation. gAverage experimental uncertainty.

M+ !0
 n E0

 b
 

(eV) 
E0(PSL) 

(eV) 
Kinetic Shift 

(eV) 
!S†(PSL)      (J 

mol-1 K-1) 

Na+ 4.90 (1.6) 1.0 (0.1) 7.49 (0.10) 3.07 (0.18) 4.42 61 (2) 

K+ 3.07 (1.5) 1.7 (0.8) 5.02 (0.11) 2.39 (0.10) 2.63 58 (2) 

Rb+ 1.08 (0.8) 1.4 (0.1) 3.86 (0.05) 1.99 (0.08) 1.87 65 (2) 

Cs+ 0.8 (0.1) 1.6 (0.1) 2.98 (0.09) 1.67 (0.07) 1.31 66 (2) 
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Table 6.3. Geometrical Parameters of the B3LYP/def2-TZVPPD Optimized Structures of Neutral and M+(da18C6) Complexes.a 
M+ Conformer Symm r(M–N)  

(Å) 
r(M–O)  

(Å) 
!MµN,O  

(°) 
!MµO  

(°) 
!CNC 

(°) 
!COC 

(°) 
!NCCO 

(°) 
!OCCO 

(°) 
!CNCC 

(°) 
!COCC 

(°) 

da18C6 C1 C2h - - - - 113.8 113.4 66.5 72.4 179.6 177.8 
             

Na+ Na1 C2h 2.755 2.833  61.6  57.8  111.4 112.9 61.7 58.3 179.9 175.0 
 Na2 C1 2.504 2.436  62.2  57.5  113.1 114.2 61.3 61.1 178.2 158.1 
 Na3 C1 2.553 2.480  70.4  69.4  115.3 116.5 57.5 52.5 119.3 111.2 
 Na4 C2h 2.499 2.326  74.9  74.7  118.5 120.0 49.5 45.8 89.3 99.1 
             

K+ K1 C2h 2.943 2.842  60.9  59.6  113.4 113.3 65.6 62.0 173.5 176.0 
 K2 Cs 2.917 2.822  58.7  59.1 115.4 113.0 58.0 65.2 164.6 176.0 
 K3 Cs 2.986 2.786  59.9  59.8  116.0 114.4 58.6 57.9 135.5 168.5 
 K4 C2h 2.895 2.829  61.6  59.3  118.8 113.8 53.5 69.7 132.4 170.3 
             

Rb+ Rb1 C2h 3.060 2.946  59.2  58.0  113.9 113.7 67.6 63.8 172.6 174.9 
 Rb2 Cs 3.068 2.980  55.4  55.9  115.2 113.0 58.1 66.1 171.3 176.3 
 Rb3 C1 3.180 3.004  57.0  57.9  115.1 114.3 65.0 66.0 137.0 151.7 
 Rb4 C2h 2.971 2.893  59.1  62.0  119.7 114.2 55.6 74.8 129.0 169.4 
             

Cs+ Cs1 Cs 3.186 3.127  55.6  54.4  113.9 11337 67.1 64.0 173.0 172.7 
 Cs2 Cs 3.188 3.151  52.3  52.7  114.9 113.1 58.1 66.4 171.6 175.4 
 Cs3 Cs 3.330 3.146  54.3  55.1  115.1 114.0 65.6 67.3 137.2 151.6 
 Cs4 C2h 3.063 2.966  58.8  62.5  120.5 114.6 58.5 81.0 124.0 168.1 

aAverage values are given for similar bond distances or angles, and represents the absolute average. The ground-state conformations 
are indicated in bold. 
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6.8. Figure Captions 

 

Figure 6.1.  Structure of da18C6. B3LYP/def2-TZVPPD optimized structures and 

relative energies at 0 K (in kJ/mol) of the stable low-energy conformations of da18C6. 

The calculated dipole moments (µ) are also shown. 

  

Figure 6.2.  Cross section for collision-induced dissociation of Rb+(da18C6) with Xe as a 

function of kinetic energy in the center-of-mass frame (lower x-axis) and the laboratory 

frame (upper x-axis).  Data are shown for a Xe pressure of ~0.2 mTorr, part a.  Zero-

pressure extrapolated cross section for collision-induced dissociation of the Rb+(da18C6) 

complex with Xe in the threshold region as a function of kinetic energy in the center-of-

mass frame (lower x-axis) and the laboratory frame (upper x-axis).  The solid line shows 

the best fit to the data using the model of Eq (2.4) convoluted over the neutral and ion 

kinetic and internal energy distributions.  The dashed line shows the model cross section 

in the absence of experimental kinetic energy broadening for reactants with an internal 

temperature of 0 K, part b. 

 

Figure 6.3. Cross sections for collision-induced dissociation of M+(da18C6) complexes, 

where M+ = Na+, K+, and Cs+, with Xe as a function of kinetic energy in the center-of-

mass frame (lower x-axis) and the laboratory frame (upper x-axis).  Data are shown for a 

Xe pressure of ~0.2 mTorr, parts a-c, respectively. Zero-pressure extrapolated cross 

sections for collision-induced dissociation of M+(da18C6) complexes, where M+ = Na+. 

K+, and Cs+, parts d-f respectively. The solid lines show the best fits to the data using the 

model of Eq. (2.4) convoluted over the neutral and ion kinetic and internal energy 

distributions.  The dashed lines show the model cross sections in the absence of 

experimental kinetic energy broadening for reactants with an internal temperature of 0 K. 
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Figure 6.4.  B3LYP/def2-TZVPPD optimized geometries, relative energies at 0 K, and 

Gibbs free energies at 298 K (in kJ/mol) of the stable low-energy conformers of the 

Rb+(da18C6) complex. i indicates number of imaginary frequencies. 

 

Figure 6.5.  B3LYP/def2-TZVPPD optimized geometries, relative energies at 0 K, and 

Gibbs free energies at 298 K (in kJ/mol) of the stable low-energy conformers of the 

Na+(da18C6) complex. i indicates number of imaginary frequencies. 

 

Figure 6.6.  B3LYP/def2-TZVPPD optimized geometries, relative energies at 0 K, and 

Gibbs free energies at 298 K (in kJ/mol) of the stable low-energy conformers of the 

K+(da18C6) complex. i indicates number of imaginary frequencies. 

 

Figure 6.7.  B3LYP/def2-TZVPPD optimized geometries, relative energies at 0 K, and 

Gibbs free energies at 298 K (in kJ/mol) of the stable low-energy conformers of the 

Cs+(da18C6) complex. i indicates number of imaginary frequencies.  

 

Figure 6.8.  Variation in the relative energies at 0 K and Gibbs free energies at 298 K (in 

kJ/mol) of the four most stable conformations of the M+(da18C6) complexes as a 

function of the alkali metal cation calculated at the B3LYP/def2-TZVPPD level of 

theory. Open symbols indicate low-energy structures that possess an imaginary frequency 

for the Na1(C2h) conformer. 

 

Figure 6.9.  B3LYP and MP2(full) calculated versus TCID measured M+–da18C6 BDEs 

at 0 K (in kJ/mol), where M+ = Na+, K+, Rb+, and Cs+.  Single point energies calculated 

using the def2-TZVPPD (part a) and 6-311+G(2d,2p)_HW (part b) basis sets and the 

def2-TZVPPD and 6-31+G* optimized geometries of the ground-state conformers, 

respectively.  All values are determined here and taken from Table 6.2. 
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Figure 6.10. Comparison of TCID measured and B3LYP/def2-TZVPPD calculated M+–

da18C6 and M+–18C6 BDEs at 0 K (in kJ/mol) part a, and M+–da18C6 and M+–ha18C6 

BDEs at 0 K (in kJ/mol) part b, where M+ = Na+, K+, Rb+, and Cs+.  All values for the 

M+(da18C6) complexes are determined here and taken from Table 6.2. Calculated values 

for the M+–18C6 BDEs are taken from reference 24.Values for the M+- ha18C6 BDEs are 

taken from reference 24. Calculated values for the M+!18C6 BDEs are taken from 

reference 26.   
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CHAPTER 7 
Alkali Metal Cation – Hexathia-18-Crown-6: Effects of Alkali Metal Cation Size on 

the Structure and Binding Energies 

 

7.1. Introduction 

 Hexathia-18crown-6 (1,4,7,10,13,16-hexathiacyclooctadecane, ht18C6) is a 

multidentate sulfur macrocycle and the thia analogue of 18-crown-6 (1,4,7,10,13,16-

hexaoxacyclooctadecane, 18C6). The structure of ht18C6 is shown in Figure 7.1. To 

date, very little gas phase thermochemical and spectroscopic information has been 

reported for ht18C6 interactions with the alkali metal cations. 

 The purpose of this work was to further extend the studies of molecular 

recognition of metal cations by macrocyclic ligands by probing the nature of the binding 

interactions in alkali metal cation!ht18C6 complexes and providing accurate binding 

energies for the series of alkali metal cations including Na+, K+, Rb+, and Cs+. Results for 

the M+(ht18C6) complexes are compared to the analogous M+(18C6) and M+(ha18C6) 

complexes to elucidate the influence of the donor atoms (S versus O and S versus N) on 

the nature and strength of binding. In aqueous solution, alkali metal cations preferentially 

bind to crown ethers over the analogous nitrogen and sulfur macrocycles [ 1 ].  

Investigating the M+(ht18C6) complexes in the gas phase thus allows separation of the 

intrinsic binding interactions. The effects of the alkali metal cations on the conformation 

of their complexes to ht18C6 were also investigated.  

 

7.2. Collision–Induced Dissociation Experiments 

Cross sections for collision-induced dissociation (CID) of four M+(ht18C6) 

complexes, where M+ = Na+, K+, Rb+, and Cs+, were measured using a guided ion beam 

tandem mass spectrometer that has been described in detail Chapter 2. The M+(ht18C6) 
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complexes were generated by electrospray ionization (ESI) [2].  Thermochemical 

analyses of the experimental results were explicitly discussed in Chapter 2. 

 

7.3. Theoretical Calculations 

To obtain model structures, vibrational frequencies, rotational constants, and 

energetics for the neutral ht18C6 ligand and the M+(ht18C6) complexes, molecular 

dynamics simulated annealing procedures and ab initio and density functional theory 

calculations were performed using Hyperchem [3] and the Gaussian 09 suite of programs 

[4], respectively, and is described in detail in Chapter 2.   

Starting structures for the M+(ht18C6) complexes were generated using four of 

the five low-energy neutral ht18C6 structures, as they were expected to provide the most 

favorable geometries for interaction with the alkali metal cation, and placing the alkali 

metal cation in the center of the macrocyclic ring of ht18C6. 

 Vibrational analyses of the geometry-optimized structures were performed to 

determine the vibrational frequencies of the neutral ht18C6 ligand and M+(ht18C6) 

complexes. When used to model the data or to calculate thermal energy corrections, the 

computed frequencies were scaled by a factor of 0.9804 [5].  Single-point energy 

calculations were performed at the B3LYP and MP2(full) levels of theory using 6-

311+G(2d,2p)_HW and def2-TZVPPD basis sets and the B3LYP/6-31+G* _HW and 

B3LYP/def2-TZVPPD optimized geometries, respectively. To obtain accurate BDEs, 

zero-point energy (ZPE) corrections scaled by 0.98 were applied, and basis set 

superposition errors (BSSE) were subtracted from the computed BDEs in the full 

counterpoise correction [6,7].  The BSSE corrections are much smaller for B3LYP than 

MP2(full) calculations. The polarizabilities for the stable low-energy conformers of 

ht18C6 were calculated at the PBE0/6-311+G(2d,2p) level of theory using the B3LYP/6-

31+G* optimized geometries. This level of theory has been shown to accurately 

reproduce experimental polarizabilities [8]. In addition, the polarizabilities for the stable 
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low-energy conformers of ht18C6 were also calculated at the PBE0/def2-TZVPPD level 

of theory. 

 Several of the optimized structures of the M+(ht18C6) complexes exhibit 

imaginary frequencies. Attempts were made to eliminate imaginary frequencies by 

additional cycles of simulated annealing at 298 K as well as by moving the metal cation 

along the path associated with the corresponding mode and re-optimizing, but even with 

tight convergence several structures consistently converged to the same conformer with 

an imaginary frequency. 

 

7.4. Results 

7.4.1. Cross Sections for Collision–Induced Dissociation 

Cross sections were measured for the collision-induced dissociation (CID) of four 

M+(ht18C6) complexes with Xe, where M+ = Na+, K+, Rb+, and Cs+. Figure 7.2a shows 

representative data for the K+(ht18C6) complex. The complexes to Na+, Rb+, and Cs+ 

exhibit similar relative behavior and are provided as Figure 7.3a-c. In all cases, the alkali 

metal cation is the only ionic product observed corresponding to endothermic loss of the 

intact da18C6 ligand in the CID reactions 7.1.  

 

          M+(ht18C6)  +  Xe  !  M+  +  ht18C6  +  Xe       (7.1) 

 

The magnitudes of the CID cross sections generally decrease and the apparent thresholds 

increase as the size of the alkali metal cation increases except for the Na+, consistent with 

the trend expected for binding based primarily on electrostatic interactions [9]. 

 

7.4.2. Threshold Analysis 

Thresholds for CID reactions 7.1 are determined using the model of Eq. 2.4 for 

four M+(ht18C6) complexes. Results of these threshold analyses are given in Table 7.1. 
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A representative analysis is shown in Figure 7.2b for the K+(ht18C6) complex, whereas 

an analogous set of figures for the complexes to Na+, Rb+, and Cs+ are provided as 

Figure 7.3d-f. The loose PSL TS accurately reproduces the experimental cross sections 

for CID reactions 7.1 for all four M+(ht18C6) complexes [10]. For noncovalently bound 

metal-ligand complexes, the loose PSL TS model provides the most accurate assessment 

of the kinetic shifts for CID processes [11–19]. The CID cross sections of the 

M+(ht18C6) complexes are reproduced over energy ranges exceeding 4.0 eV and cross 

section magnitudes of at least a factor of 1000 for the M+(ht18C6) complexes. Table 7.1 

also includes threshold values, E0, obtained without including the RRKM lifetime 

analysis. A measure of the kinetic shifts for the M+(ht18C6) systems is obtained by 

taking the difference of the E0 and E0(PSL), which increase from 1.01 eV for the 

Cs+(ht18C6) complex to 2.66 eV for the Na+(ht18C6) complex. Because all of the 

M+(ht18C6) complexes possess the same number of vibrational modes, the observed 

kinetic shifts should directly correlate with the measured M+-ht18C6 BDE, as observed 

(Table 7.1). The entropy of activation, "S*, is a measure of the looseness of the TS, but 

also depends on the threshold energy. The "S*(PSL) values for these systems at 1000 K 

exhibit modest variation, as expected on the basis of the similarity of these systems, and 

vary between 76 and 112 J K-1 mol-1. These entropies of activation compare favorably to 

those previously determined for a wide variety of noncovalently bound complexes that 

dissociate via simple noncovalent bond cleavage [11–19]. 

 

7.4.3. Theoretical Results 

The ground-state and stable low-energy conformations of the ht18C6 ligand and 

M+(ht18C6) complexes were calculated as described in the Chapter 2. M+-ht18C6 BDEs 

calculated at the B3 LYP and MP2(full) levels of theory using the def2-TZVPPD basis 

set and the B3LYP/def2-TZVPPD optimized geometries are summarized in Table 7.2. 

Also included are values calculated at the B3LYP and MP2(full) levels of theory using 
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the B3LYP/6-311+ G(2d,2p)_HW basis set and the B3LYP/6–31+G*_HW optimized 

geometries. ZPE and BSSE corrections are also included in the computed BDEs. 

 

7.4.3.1. Neutral ht18C6  

Low-energy structures of the neutral ht18C6 ligand are calculated as described 

above and shown in Figure. 7.1. Five distinct stable geometries are found. The various 

conformations of the neutral ht18C6 ligand are designated based on their relative Gibbs 

free energies and the symmetry of the ht18C6 ligand. Previous studies of the analogous 

M+(ha18C6) complexes [11] and the smaller M+(ta12C4) complexes [12] suggest 

energetics computed using the B3LYP/def2-TZVPPD level of theory are the most 

reliable among the levels of theory examined here. Therefore, the following discussion 

focuses on the geometries and energetics calculated at the B3LYP/def2-TZVPPD level of 

theory unless otherwise noted. The ground-state conformation C1 of neutral da18C6 

adopts Ci symmetry, where four of the sulfur donor atoms are in exodentate position and 

two are endo. It has been previously shown by Cooper et al. that the crystal structural of 

ht18C6 have both endo and exodentate sulfur atoms [20]. The local dipoles are anti-

aligned for the C1(Ci) conformer leading to cancellation, and no net dipole moment. The 

next higher-energy conformer C2(C2h) which lie 28.7 kJ/mol higher in free energy, have 

a similar rectangular shape as the C1(Ci) conformer, but all the sulfur atoms are found in 

the ring. Similar to the C1 conformer, the local dipoles of the C2 conformer are anti-

aligned leading to cancellation, and no net dipole moment. The C3, C4, and C5 

conformers of ht18C6 adopt geometries similar to those observed when the macrocycle is 

complexed to a metal cation, and are calculated to lie 56.1, 76.8, and 106.7 kJ/mol higher 

in free energy than the ground-state C1 conformer. In contrast, the C1(Ci) and C2(C2h) 

conformers adopt more rectangular geometries, similar to the ground-state determined for 

the 18C6 ligand [13].  
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7.4.3.2. M+(ht18C6) 

The ground-state and low-energy structures of the K+(ht18C6) complex optimized 

at the B3LYP/def2-TZVPPD level of theory are shown in Figure 7.4. Similar 

conformations are also found for the complexes to the other alkali metal cations 

investigated and are shown as Figures 7.5–7.7. The nomenclature employed to describe 

these structures is of the form Mx(symmetry), where M identifies the metal cation, x 

indicates the relative order of stability among the low-energy conformers of the 

Na+(ht18C6) complexes, and the symmetry is that of the ligand in its uncomplexed form. 

The ground-state conformation of the M+(ht18C6) complexes at 0 K determined at the 

B3LYP and MP2(full) levels of theory using the def2-TZVPPD basis set are very similar 

for the Na+, Rb+, and Cs+ complexes, compare Figures 7.5–7.7, and 7.8, but an a 

different ground-state conformation is observed K+ cation. The M1 conformer is 

calculated to be the lowest energy conformation for the alkali metal cations interaction 

with ht18C6, (Figure 7.8). The M1 and M2 conformer encapsulates the Na+ and K+ 

cations in the cavity created by the sulfur donor atoms. In contrast, the Rb+ and Cs+ 

cations are too large to fit in the cavity and sit above the center of the macrocyclic ring, 

(see Figures 7.4–7.7). In the M1 conformers, the ht18C6 ligand is highly distorted from 

its ground-state conformation in the absence of the metal cation, with the largest 

differences being observed for the Cs+(ht18C6) complex. In the M2 conformers, the 

metal cations sit above the plane created by sulfur donor atoms for all metal cations 

except Na+ and K+. In all cases, the metal cation is encapsulated in the center the ring for 

the M3 conformation.  

 

7.4.3.2.1. K+(ht18C6)  

In the ground-state conformation of the K+(ht18C6) complex, K2(S6), the K+  

metal cation sits in the center of the nearly planar ring created by the sulfur donor atoms 

at an average K+–S bond distance of 3.271 Å. There are large differences in the average 
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!SCCS and !CSCC dihedral angles that describe the skeletal backbone of the 

macrocycle that occur upon binding of K+, Table 7.3. Santos et al. concluded that for 

M+(ha18C6) complexes to small metal cations such that the M+–N bond distances are 

<2.6 Å, a more bent structure (trigonal prismatic) is preferred, whereas for larger metal 

cations, a planar hexagonal conformer is preferred [21,22]. The trend seems to be true for 

sulfur donor atoms binding to K. The next most stable conformer, K1(C1), is calculated to 

lie 3.4 kJ/mol higher in energy and has an average K+–S bond distance of 3.445 Å. When 

the free energy is considered, the K1(C1) conformer is the ground-state and the K2(S6) 

conformer lie 4.3 kJ/mol higher in energy. In the K1(C1) conformer, three of the sulfur 

donor atoms are oriented toward the cavity, while the other three sulfur donor atoms are 

oriented towards the metal cation.  The K1(C1) conformer skeletal backbone dihedral 

angles differ from the ht18C6 conformer by 80 to 31.5° , with the !SCCS and !CSCC 

dihedral angles contracting. The K3(C2h) conformer lies 188.2 kJ/mol higher in free 

energy and is similar to the trigonal prismatic structure observed for ha18C6 interactions 

with small metal cations [23,24,25]. The K3(C2h) conformer is more compact such that 

the average K+–S bond distance is the shortest among the low–energy conformers 

computed, 2.979 Å. The K3(C2h) conformer exhibits the greatest distortion upon binding 

of K+ of all of the stable conformers computed, see Table 7.3. Similar trends in the 

geometric parameters are found for all of the other alkali metal cation–hexathia 18-

crown-6 complexes. The K3(C2h)  conformer possesses an imaginary frequency 

corresponding to a ring-breathing mode where the metal cation moves up and down in the 

center of the ring as the ring stretches and shrinks. Calculations were performed using 

tight convergence in an attempt to remove this imaginary frequency; however, even tight 

convergence failed to eliminate the imaginary frequency. 

 

7.4.3.2.2. Rb+(ht18C6) and Cs+(ht18C6) 
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For Rb+ and Cs+, the Cs complexes, M1(Cs) are preferred as found for the 

Na+(ht18C6) complex. The cavity of ht18C6 is too small to accommodate these larger 

metal cations such that the metal cation sits above the ring in the complexes to Rb+ and 

Cs+, Figure 7.6–7.7. At the B3LYP/def2-TZVPPD level of theory, M2(C3v) conformers 

are calculated to lie 3.1 and 7.5 kJ/mol higher in free energy for Rb+ and Cs+ than the 

ground–state M1 conformers, respectively. The Rb1(Cs) conformer has an average Rb+–S 

bond distance of 3.601 Å, whereas the Rb2(C3v) conformer has an average Rb+–S bond 

distance of 3.493 Å. Smaller bond distances generally suggest tighter binding, but not for 

the Rb+(ht18C6). Similarity, the Cs1(Cs) conformer has an average Cs+–S bond distance 

of 3.758 Å, whereas the Cs2(C3v) conformer has an average Cs+–S bond distance of 

3.676 Å. For Rb+(ht18C6), the Rb3(D3d) conformer is calculated to lie 261.7 kJ/mol 

higher in free energy than the ground–state Rb1(Cs) conformer, with an average Rb+–S 

bond distance of 3.096 Å. For Cs+(ht18C6), the Cs3(D3d) conformer is calculated to lie 

338.4 kJ/mol higher in free energy than the ground–state Cs1(Cs) conformer, with an 

average Cs+–S bond distance of 3.216 Å. The smallest average M+–S bond distances are 

found for the M3(D3d) conformer. An imaginary frequency corresponding to a ring-

breathing mode in which the metal cation moves up and down in the center of the ring as 

the ring expands and contracts, respectively is observed for the M3(D3d) conformer. 

Again, calculations were performed using tight convergence, but attempts failed to 

eliminate the imaginary frequency. 

 

7.4.3.2.3. Na+(ht18C6)  

The low-energy conformers of the Na+(ht18C6) complex at the B3LYP level of 

theory parallel those found for the complexes of the larger alkali metal cations, Figures 

7.5 and 7.8. As shown in Figure 7.8, conformers Na1(Cs) and Na2(S6) are of similar 

stability (free energy) only differing by 2.1 kJ/mol. At 0 K Na1(Cs) is the ground-state 

conformation, whereas Na2(S6) is more stable at 298 K. For the Na2(S6) conformation, 
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the average Na+!S bond distance is 3.149 Å, suggesting a more weakly bound complex 

than the Na1(Cs) conformation where the average Na+!S bond distance is 2.853 Å. The 

next most stable conformer of the Na+(ht18C6) complex was found to have C2h 

symmetry, Na3(C2h) and was calculated to lie 66.4 kJ/mol higher in free energy than the 

Na2 conformer with corresponding Na+–S average bond distances of 2.742 Å. Parallel to 

that found for the M3(C2h) conformers of the larger alkali metal cations, the shortest 

average bond distances are found for the Na3(C2h) conformer and also possesses an 

imaginary frequency corresponding to a ring-breathing mode in which the metal cation 

moves up and down in the center of the ring as the ring expands and contracts. In contrast 

to the complexes to the larger alkali metal cations, the Na4 conformer has no imaginary 

frequencies. Again, calculations were performed using tight convergence, but attempts 

failed to eliminate the imaginary frequency. 

 

7.5. Discussion 

7.5.1. Comparison of Theory and Experiment 

The experimentally measured and theoretically calculated M+–ht18C6 BDEs are 

summarized in Table 7.2, whereas the agreement between the calculated and measured 

BDEs is illustrated in Figure 7.9. As can be seen in the figure, the B3LYP/def2-TZVPPD 

values exhibit very good agreement with the measured values. The mean absolute 

deviation (MAD) between theory and experiment is 7.9 ± 5.5 kJ/mol, and only roughly 

differs from the average experimental uncertainty (AEU) in these values, 6.7 ± 2.3 

kJ/mol, by 1.2 kJ/mol. The agreement between B3LYP/6-311+G(2d,2p)_HW theory and 

the measured M+–da18C6 BDEs is not as good, Table 7.2 and Figure 7.9, where the 

MAD is 14.5 ± 9.7 kJ/mol, roughly double the AEU in these measurements. When the 

measured BDEs are compared to the those calculated at the MP2(full)/def2-TZVPPD 

level of theory, the MAD is 15.7 ± 11.9 kJ/mol, almost double the AEU in these values. 

In contrast, the MAD improves to 8.7 ± 2.8 kJ/mol for values calculated at the 
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MP2(full)/6-311+G(2d,dp)_HW level of theory, which compares well to the AEU in 

these values. Clearly, the best agreement between the measured and calculated M+–

da18C6 BDEs is found for the B3LYP/def2-TZVPPD results for all four alkali metal 

cations. In contrast, at the MP2(full)/def2-TZVPPD level of theory, the calculated BDEs 

are systematically high except for the Na+(ht18C6) complex, where excellent agreement 

is found. 

 

7.5.2. Trends in the Binding of Alkali Metal Cations to da18C6 

The measured M+–ht18C6 BDEs at 0 K are summarized in Table 7.2 and shown 

pictorially in Figure 7.10. As the size of the alkali metal cation increases from Na+ to 

Cs+, the M+–da18C6 BDEs are found to decrease monotonically, similar to behavior 

observed for many alkali metal cation-ligand complexes [9, 11–32]. This is the expected 

trend for binding based primarily on electrostatic interactions, because the increasing size 

of the alkali metal cation leads to longer metal-ligand bond distances [33]. The relative 

change in the ionic radii for the alkali metal cations becomes smaller with increasing size 

of the cation such that the difference in the M+–ht18C6 BDEs for adjacent metal cations 

becomes smaller as the size of the metal cation increases from Na+ to Cs+. The relative 

trend in the gas phase for alkali metal cation binding to ht18C6 is Na+ > K+ > Rb+ > Cs+.  

  

7.5.3. Comparison with 18C6 

The TCID measured and B3LYP/def2-TZVPPD and MP2(full)/def2-TZVPPD 

calculated M+–ht18C6 and M+–18C6 BDEs [11,13] are compared in Figure 7.11a. 

Experimentally, alkali metal cation interactions have strong preference for 18C6 as 

compared to ht18C6. In contrast, both the B3LYP and MP2(full) levels of theory suggest 

that the alkali metal cations bind to 18C6 more strongly than ht18C6, and that the 

preference for 18C6 should increase slightly with the size of the alkali metal cation. 

Similar results were found for ha18C6, where theory suggests that the alkali metal cations 
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should bind to 18C6 more strongly than ha18C6 and that the preference for 18C6 should 

increase with the size of the alkali metal cation [11]. The result of this study suggest that 

theory either overestimates the strength of interaction with oxygen donor atoms or 

underestimates the strength of binding to sulfur donor atoms. 

 

7.5.4. Comparison with ha18C6 

The measured and B3LYP/def2-TZVPPD calculated M+-ht18C6 and M+-ha18C6 

BDEs [11] are compared in Figure 7.11b. Experimentally, in all cases preferential 

binding of the alkali metal cations to ha18C6 over ht18C6 is observed. B3LYP results 

reproduce the experimental trend, whereas the MP2(full) results suggest that the larger 

alkali metal cation Cs+ binding is equivalent to ha18C6 as compared to ht18C6. This 

trend is slightly reproduced in the experiments, where the larger alkali metal cation Cs+ 

are found to bind to ha18C6 slightly more strongly than ht18C6. However, the 

differences are small and within experimental error.  

 

7.6. Conclusions 

Thresholds for the loss of the intact ht18C6 ligand determined from the kinetic 

energy dependence of the collision-induced dissociation of four M+(ht18C6) complexes, 

where M+ = Na+, K+, Rb+, and Cs+, with Xe were determined. The effects of the kinetic 

and internal energy distributions of the M+(ht18C6) and Xe reactants, multiple collisions 

with Xe, and the lifetime of the activated M+(ht18C6) complexes using a loose PSL TS 

model were carefully considered to ensure accurate modeling of the experimental data. 

Theoretical calculations were performed at several levels of theory; B3LYP/def2-

TZVPPD provides the best results and is therefore used for data analysis. Excellent 

agreement between the B3LYP/def2-TZVPPD calculated and experimentally determined 

BDEs was found for all four complexes, similar to the M+(ta12C4) [12] and M+(ha18C6) 

[11] complexes investigated using parallel approaches. Trends based primarily on 
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electrostatic interactions are observed for the measured and theoretically calculated M+-

ht18C6 BDEs. The BDEs decrease monotonically as the size of the alkali metal cation 

increases. When compared to the analogous 18C6 and ha18C6, preferential binding of the 

alkali metal cations to 18C6 and ha18C6 over ht18C6 was observed.  
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 Table 7.1. Fitting Parameters of Equation (S1), Threshold Dissociation Energies at 0 K, and 
Entropies of Activation at 1000 K of M+(ht18C6) Complexesa 

aPresent results, uncertainties are listed in parentheses. Average values for a loose PSL TS. bNo 
RRKM analysis. 
 
 
Table 7.2. Bond Dissociation Enthalpies of M+(ht18C6) Complexes at 0 K in kJ/mola 

 B3LYPb   MP2c  M+  
TCID De D0

d D0,BSSE
d,e De D0

d D0,BSSE
d,e 

Na+ 262.6 (10.0) 256.8 250.9 248.8 290.1 284.2 260.4 

  264.5 259.6 252.0 287.3 282.4 251.2 

K+ 177.7 (6.3) 186.0 182.3 179.7 214.1 209.8 180.3 

  188.5 184.4 180.3 204.4 200.2 182.9 

Rb+ 163.8 (5.8) 157.1 153.4 152.7 205.5 201.7 178.1 

  147.0 144.2 141.9 178.5 175.7 153.2 

Cs+ 138.4 (4.8) 137.7 134.4 133.9 189.5 186.2 169.5 

  121.0 118.4 115.6 156.1 153.5 130.7 

MADf 6.7 (2.3) g  7.7 (3.9) 7.9 (5.5)   15.7 (11.9) 

    14.5 (9.7)   8.7 (2.8) 
aPresent results, uncertainties are listed in parentheses.  bCalculated at B3LYP/def2-TZVPPD 
and B3LYP/6-311+G(2d,2p)_HW//B3LYP/6-31+G*_HW levels of theory. cCalculated at 
MP2(full)/def2-TZVPPD//B3LYP/def2-TZVPPD and MP2(full)/6-311+G(2d,2p)_HW //B3LYP/ 
6-31+G*_HW  levels of theory.  dIncluding ZPE corrections with the B3LYP/6-31+G*_HW and 
B3LYP/def2-TZVPPD frequencies scaled by a factor of 0.9804. eAlso includes BSSE 
corrections. fMean absolute deviation. gAverage experimental uncertainty.

M+ !0
 n E0

 b
 

(eV) 
E0(PSL) 

(eV) 
Kinetic Shift 

(eV) 
!S†(PSL)      (J 

mol-1 K-1) 

Na+ 22.20 (2.7) 1.2 (0.1) 5.38 (0.17) 2.72 (0.10) 2.66 112 (2) 

K+ 163.14 (18.1) 1.2 (0.1) 3.52 (0.04) 1.84 (0.07) 1.68 80 (2) 

Rb+ 102.79 (10.8) 1.4 (0.1) 3.15 (0.08) 1.70 (0.06) 1.45 82 (2) 

Cs+ 44.15    (5.1) 1.7 (0.1) 2.45 (0.06) 1.44 (0.05) 1.01 76 (2) 
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Table 7.3. Geometrical Parameters of the B3LYP/def2-TZVPPD Optimized Structures of Neutral and M+(ht18C6) Complexes.a 
M+ Conformer Symm r(M–S)  

(Å) 
!SMS  

(°) 
!CSC 

(°) 
!SCCS 

(°) 
!CSCC 

(°) 

ht18C6 C1 Ci - - 108.8 145.9 175.9 
        

Na+ Na1 Cs 2.853 77.2 105.6 57.8 103.2 
 Na2 S6 3.149 64.3 100.6 64.3 167.0 
 Na3 C2h 2.742 82.4 110.4 42.6 79.7 
        

K+ K1 C1 3.445 60.0 101.6 65.9 144.4 
 K2 S6 3.271 64.4 102.3 72.2 166.0 
 K3 C2h 2.979 78.1 114.7 40.8 83.4 
        

Rb+ Rb1 Cs 3.601 57.5 102.0 66.7 143.7 
 Rb2 C3v 3.493 58.1 102.0 65.7 166.8 
 Rb3 D3d 3.096 76.6 116.7 40.2 84.0 
        

Cs+ Cs1 Cs 3.758 55.0 101.3 66.9 142.1 
 Cs2 C3v 3.676 54.3 101.8 63.3 163.1 
 Cs3 D3d 3.216 75.3 118.8 40.1 83.8 
        
        

aAverage values are given for similar bond distances or angles, and represents the absolute average.  
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Table 7.4. Enthalpies and Free Energies of M+ Binding to ht18C6 at 298 K in kJ/mola 

M+(ht18C6) !H0 !H0
b

 !H298
 - !H0

b !H298 !H298
b T!S298

b !G298 !G298
b 

Na+(ht18C6) 262.6 (10.0) 248.8 5.4 (1.3) 268.0 (10.1) 254.2 42.9 (2.7) 225.1 (10.4) 211.3 

K+(ht18C6) 177.7 (6.3) 179.7 3.0 (0.8) 180.7 (6.4) 182.7 35.7 (3.6)    145.0 (7.3) 147.6 

Rb+(ht18C6) 163.8 (5.8) 152.7 2.5 (0.8) 166.3 (5.9) 155.2 37.9 (3.6)    128.4 (6.9) 117.3  

Cs+(ht18C6) 138.4 (4.8) 133.9 2.1 (0.6) 140.5 (4.8) 136.0 36.2 (7.0)    104.4 (8.5) 99.9  

aPresent results, uncertainties are listed in parentheses. bDensity functional theory calculations at the B3LYP/def2-TZVPPD level of 
theory with frequencies scaled by 0.98.  
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Figure Captions 

Figure 7.1.  Structure of ht18C6.  B3LYP/def2-TZVPPD optimized structures and 

relative energies at 0 K (in kJ/mol) of the stable low-energy conformations of ht18C6. 

The calculated dipole moments (µ) are also shown.  

 

Figure 7.2.  Cross section for collision-induced dissociation of K+(ht18C6) with Xe as a 

function of kinetic energy in the center-of-mass frame (lower x-axis) and the laboratory 

frame (upper x-axis).  Data are shown for a Xe pressure of ~0.2 mTorr, part a.  Zero-

pressure extrapolated cross section for collision-induced dissociation of the K+(ht18C6) 

complex with Xe in the threshold region as a function of kinetic energy in the center-of-

mass frame (lower x-axis) and the laboratory frame (upper x-axis).  The solid line shows 

the best fit to the data using the model of Eq (2.4) convoluted over the neutral and ion 

kinetic and internal energy distributions.  The dashed line shows the model cross section 

in the absence of experimental kinetic energy broadening for reactants with an internal 

temperature of 0 K, part b. 

 

Figure 7.3. Cross sections for collision-induced dissociation of M+(ht18C6) complexes, 

where M+ = Na+, K+, and Cs+, with Xe as a function of kinetic energy in the center-of-

mass frame (lower x-axis) and the laboratory frame (upper x-axis).  Data are shown for a 

Xe pressure of ~0.2 mTorr, parts a-c, respectively. Zero-pressure extrapolated cross 

sections for collision-induced dissociation of M+(ht18C6) complexes, where M+ = Na+. 

K+, and Cs+, parts d-f respectively. The solid lines show the best fits to the data using the 

model of Eq. (2.4) convoluted over the neutral and ion kinetic and internal energy 

distributions.  The dashed lines show the model cross sections in the absence of 

experimental kinetic energy broadening for reactants with an internal temperature of 0 K. 
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Figure 7.4.  B3LYP/def2-TZVPPD optimized geometries, relative energies at 0 K, and 

Gibbs free energies at 298 K (in kJ/mol) of the stable low-energy conformers of the 

K+(ht18C6) complex.  

 

Figure 7.5.  B3LYP/def2-TZVPPD optimized geometries, relative energies at 0 K, and 

Gibbs free energies at 298 K (in kJ/mol) of the stable low-energy conformers of the 

Na+(ht18C6) complex.  

 

Figure 7.6.  B3LYP/def2-TZVPPD optimized geometries, relative energies at 0 K, and 

Gibbs free energies at 298 K (in kJ/mol) of the stable low-energy conformers of the 

Rb+(ht18C6) complex.  

 

Figure 7.7.  B3LYP/def2-TZVPPD optimized geometries, relative energies at 0 K, and 

Gibbs free energies at 298 K (in kJ/mol) of the stable low-energy conformers of the 

Cs+(ht18C6) complex.  

 

Figure 7.8.  Variation in the relative energies at 0 K and Gibbs free energies at 298 K (in 

kJ/mol) of the four most stable conformations of the M+(ht18C6) complexes as a function 

of the alkali metal cation calculated at the B3LYP/def2-TZVPPD level of theory.  

 

Figure 7.9.  B3LYP and MP2(full) calculated versus TCID measured M+!ht18C6 BDEs 

at 0 K (in kJ/mol), where M+ = Na+, K+, Rb+, and Cs+.  Single point energies calculated 

using the def2-TZVPPD (part a) and 6-311+G(2d,2p)_HW (part b) basis sets and the 

def2-TZVPPD and 6-31+G* optimized geometries of the ground-state conformers, 

respectively.  All values are determined here and taken from Table 7.2. 
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Figure 7.10. Measured and theoretically determined BDEs at 0 K (in kJ/mol) of the 

M+(ht18C6), M+(18C6), and M+(ha18C6).  

 

Figure 7.11.  BDEs at 0 K (in kJ/mol) of the M+(ht18C6), M+(18C6), M+(da18C6), and 

M+(18C6) complexes plotted versus the ionic radius of M+ (part a), and calculated BDEs 

at 0 K (in kJ/mol), using the B3LYP/def2-TZVPPD (part b), where M+ = Na+, K+, Rb+, 

and Cs+.  Ionic radii are taken from reference 45.  All values for the M+(ht18C6) 

complexes are determined here and taken from Table 2.  Calculated values for the 

M+!18C6 and M+!ha18C6 BDEs are taken from reference [11] (M+(ha18C6 TCID)).  

The measured values for the M+!ha18C6 BDEs are taken from reference [11] 

(M+(ha18C6 TCID)). Measured values for the M+!18C6 BDEs are taken from reference 

13(Armentrout).  Measured and calculated values for the M+!da18C6 BDEs are taken 

from reference [14] (M+(da18C6 TCID)).  
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CHAPTER 8 

CONCLUSIONS AND FUTUTRE WORK 

8.1. Conclusion 

 Kinetic energy dependent cross sections for the interactions of the alkali metal 

cations (Na+, K+, Rb+, and Cs+) with cyclen, hexacyclen, diaza-18-crown-6, and hexathia-

18-crown-6 were determined by collision-induced dissociation (CID), using a custom 

built guided ion beam tandem mass spectrometer (GIBMS). Complementary electronic 

structure theory calculations using B3LYP and MP2(full) functionals with the 6-

31+G*_HW and def2-TZVPPD basis sets were preformed to determine the low-energy 

structures of the metal-ligand complexes and neutral ligand. Theoretical estimates of the 

strength of binding were calculated using B3LYP optimized structures with the 6-

311+G(2d,2p)_HW and def2-TZVPPD basis set. These studies enable the 

characterization of the various binding geometries available to cation-macrocycle 

complexes and their relative stabilities as well as to accurately determine their absolute 

binding affinities metal-ligand complexes.  The experimental and theoretical data has 

enabled the systematic evaluation of the effects of the size of the alkali metal cation, the 

nature and number of donor atoms, and the size of the macrocyclic ring has on the 

intrinsic binding interactions that control the geometry, and strength and selectivity of 

binding. In addition, using complementary infrared multiple photon dissociation 

(IRMPD) action spectroscopy experiments supported by theoretical electronic structure 

calculations, I was able to characterize the IR spectra of the cation-macrocycle complexes 

and definitively determine the structures of the complexes accessed under our 

experimental conditions.   

 In Chapter 3, simple CID leading to loss of the intact ta12C4 ligand was 

observed for all four alkali metal–ligand complexes. BDEs suggest that binding is based 

primarily on electrostatic interactions. The structures of the M+(ta12C4) complexes are 

similar to those determined for the analogous M+(12C4) complexes with only minor 
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variations arising from the presence of the amino hydrogen atoms.  Ta12C4 binds Na+ 

more strongly than 12C4. In contrast, binding to K+, Rb+, and Cs+ is slightly stronger to 

12C4 than ta12C4. These results suggest that the N donor atoms of ta12C4 are more 

selective for hard metal cations whereas 12C4 is more selective for soft metal cations. In 

Chapter 4, IRMPD action spectra of alkali metal cation-ta12C4 complexes in the region 

extending from 600 to 1600 cm-1 were obtained for four M+(ta12C4) complexes where 

M+ = Na+, K+, Rb+, and Cs+.  For all four complexes, the loss of the intact neutral ta12C4 

ligand was the only dissociation pathway observed, consistent with simple CID 

fragmentation behavior. Binding of alkali metal cations to ta12C4 produced similar 

IRMPD action spectra and yields for the M+(ta12C4) complexes increased as the size the 

alkali metal cation increased, in accordance with the trends in the strength of alkali metal 

cation binding in these systems.  

 Spectral features in the IRMPD action spectra were retained throughout the entire 

series, while new spectral features were observed for the complexes to the larger alkali-

metal cations.  Comparison with IR spectra calculated at the B3LYP/def2-TZVPPD level 

of theory allowed the conformations present in the experiments to be identified.  For the 

larger alkali metal cation K+, Rb+, and Cs+, the IRMPD action spectrum was well 

reproduced by the calculated spectrum for the most-stable conformation, C4(++++).  

Evidence for the presence of a minor population of excited conformations was observed 

for the complexes to Rb+ and Cs+.  

 In chapter 5, the CID behavior of the alkali metal cations interactions with 

hexacyclen (ha18C6) was investigated. Similar to what was observed for the ta12C4, the 

only dissociation pathway observed for all four complexes is loss of the intact ha18C6 

ligand. Trends in the measured and calculated M+–ha18C6 BDEs suggest that the binding 

is based primarily on electrostatic interactions as seen with ta12C4 ligand. For the larger 

alkali metal cations, K+, Rb+, and Cs+, the nature of the binding to ha18C6 is similar, 

resulting in highly parallel stable low-energy conformations of these complexes. The 
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ha18C6 ligand binds Na+ more strongly than 18C6 as previously found for ta12C4 vs 

12C4, whereas a slight preference for binding of 18C6 over ha18C6 to K+, Rb+, and Cs+ 

is found, but this preference is smaller than the experimental error in these measurements 

for K+ and Cs+, suggesting that this binding preference is not very significant. Overall, 

the gas-phase trends in the binding further suggest that the N donors atoms of ha18C6 

bind more strongly to hard metal cations, whereas the O donor atoms of 18C6 bind 

slightly more strongly to softer metal cations. In solvent, the binding interactions are 

weakened significantly, and the competition between the ha18C6 ligand and the solvent 

for the alkali metal cations leads to a change in the relative binding order, where ha18C6 

is selective for K+ over the other alkali metal cations. When the binding of the alkali 

metal cations to ha18C6 to ta12C4 are compared, binding of the alkali metal cations to 

ha18C6 is found to be 19 ± 6% stronger than to ta12C4, indicating that the number of 

donor atoms, the cavity size, and the flexibility of the ligand allow alkali metal cations to 

bind more strongly but that the enhancement in the binding falls off monotonically with 

each additional M+–N interaction. 

 In Chapter 6, the mixed donor atom ligand diaza-18-crown-6 (da18C6) 

interactions with the alkali metal cations were investigated. As with the nitrogen donor 

atom ligands, the loss of the intact neutral da18C6 ligand was observed, further 

suggesting binding alkali metal cations with macrocycle is based primarily on 

electrostatic interactions. The BDEs decrease monotonically as the size of the alkali 

metal cation increases, whereas solution phase trends follow the order of K+ > Na+ > Rb+ 

> Cs+ as a result of competitive binding between the macrocycle and solvent. Preferential 

binding of Na+ to ha18C6 over da18C6 and 18C6 was observed, whereas the larger alkali 

metal cations exhibited a small preference for da18C6 and 18C6 versus ha18C6. Lastly, 

in Chapter 7, the alkali metal - hexathia-18-crown-6 (ht18C6) BDEs were determined. 

Trends based primarily on electrostatic interactions were observed for the measured and 

theoretically calculated M+-ht18C6 BDEs. The BDEs decrease monotonically as the size 
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of the alkali metal cation increased as observed for ta18C6, ha18C6, and da18C6. When 

compared to the analogous 18C6 and ha18C6, preferential binding of the alkali metal 

cations to 18C6 and ha18C6 over ht18C6 was observed. 

 In summary, ta12C4 and 12C4 adopt similar ground-state conformations whereas 

different ground-state conformations are observed for the 6 donor atom ligands ha18C6, 

da18C6, ht18C6 as compared to 18C6. The def2-TZVPPD basis set produced consistent 

trends across the series investigated and compares well to the experimentally determined 

BDEs. For the comparison of the aza-macrocycles ta12C4 and ha18C6, the 6 donor atom 

ligand bind more strongly in all cases as compared to the 4 donor atom ligand. Similar 

behavior was observed for the analogous 12C4 and 18C6 ligands. The gas phase trend 

suggests that binding is determined by electrostatic interactions indicating the charge 

density of the cation is the major feature controlling binding. The gas phase trend also 

suggests that N donor atoms are more selective for hard metal cations, whereas O donor 

atoms are slightly more selective for softer metal cations, and S donor atoms bind the 

alkali metal cation the weakest.  

 Gas-phase binding energies can highlight the role solvent in the alkali metal 

cations interactions with the macrocycles investigated here. Previously Armentrout et al. 

[1] investigated the aqueous selectivity by considering the competition between the 

solvation of alkali metal cations and the complexation by 18C6 considering the total bond 

dissociation of M+(H2O)x for M+ = Na+, K+, Rb+, and Cs+, and the enthalpy for Reaction 

8.1.  

 

M+(H2O)x + 18C6 ! M+(18C6) + xH2O                                              (8.1)  

 

Glendening et al. [2] used a similar analysis, but with only theoretical data. In both cases, 

the authors concluded the aqueous selectivity of 18C6 for the alkali metal cation can be 

reproduced when x = 5-6 water molecules. In this method, the extent to which M+(L) 
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complex is solvated is not considered. In a similar approach, the competition the 

solvation of alkali metal cations and the complexation by da18C6 considering the total 

bond dissociation of M+(H2O)x for M+ = Na+, K+, Rb+, and Cs+, and the enthalpy for 

Reaction 8.2 

 

M+(H2O)x + da18C6 ! M+(da18C6) + xH2O                                              (8.2) 

 

Table 8.1 list the total gas-phase bond energies of M+(H2O)x for M = Na+, K+, Rb+, and 

Cs+ for x = 1 – 6 [3], and the reaction enthalpy for Reaction 8.2.  For x = 1–3, the 

reaction enthalpy parallels the gas-phase selectivity of da18C6 of Na+ > K+ > Rb+ > Cs+. 

For x = 4, the selectivity for Na+ and K+ are similar, whereas the solution phase behavior 

is observed for x = 5 – 6, K+ > Na+ > Rb+ > Cs+. A similar analysis is preformed for the 

ha18C6 by considering the total bond dissociation of M+(ACN)x for M+ = Na+, K+, Rb+, 

and Cs+ and ACN = acetonitrile, and the enthalpy for Reaction 8.3 

 

M+(ACN)x + ha18C6 ! M+(ha18C6) + xACN                                              (8.3) 

 

Table 8.2 list the total gas-phase bond energies of M+(ACN)x for M = Na+, K+, Rb+, and 

Cs+ for x = 1 – 6 [4,5]. For x = 1–3, the reaction enthalpy parallels the gas-phase 

selectivity of ha18C6 of Na+ > K+ > Rb+ > Cs+. For x = 4–6, the reaction enthalpy 

changes from the gas-phase selectivity of ha18C6 to Na+ > Rb+ > K+ > Cs+. For ta12C4, 

considering the total bond dissociation of M+(ACN)x for M+ = Na+, K+, Rb+, and Cs+ and 

ACN = acetonitrile, and the enthalpy for Reaction 8.4 

 

M+(ACN)x +ta12C4 ! M+(ta12C4) + xACN                                              (8.4) 
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Table 8.3 list the total gas-phase bond energies of M+(ACN)x for M = Na+, K+, Rb+, and 

Cs+ for x = 1 – 6 [4,5]. For x = 1–2, the reaction enthalpy parallels the gas-phase 

selectivity of ta12C4 of Na+ > K+ > Rb+ > Cs+. For x = 3–6, the reaction enthalpy 

changes from the gas-phase selectivity of ta12C4 to Na+ > Cs+ > Rb+ > K+. For 

interactions in water, Reaction 8.2 does well at reproducing the gas-phase and solution 

phase trend, whereas for interactions in acetonitrile Reactions 8.2–8.3 does not preform 

well.  

 

8.2. Future Work 

 The primary aims of the studies preformed in this thesis were to apply 

quantitative collision-induced dissociation (TCID) methods and electronic structure 

calculations to understand noncovalent interactions that occur in alkali metal cation 

ligand macrocyclic complexes. To date, accurate thermodynamic information on the O, 

N, and S 6 donor atom macrocycles, as well as information for the O and N four donor 

atom ligands have been investigated. Future experiments would involve extending the 

studies to the sulfur analogue of 12-crown-4. In addition studies involving mix donor 

atoms ligand in alkali metal cations can be examined in future studies. 

 Studying the binding interactions of alkali metal – ligand complexes in solvent 

and comparing to the gas-phase data will help elucidate the effects of solvent on the 

binding in these complexes. In Chapter 5, initial calculations were preformed on limited 

test set for the M+(ha18N6) using the polarization continuum model (PCM) for water and 

acetonitrile. Future calculations will involved using PCM for water, methanol, and 

acetonitrile for all calculations presented here. 
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Table 8.1. Total Bond Dissociation of M+(H2O)x for M = Na, K, Rb, and Cs and the 
Enthalpy for the reaction  M+(H2O)x + da18C6 ! M+(da18C6) + xH2O. 
x Na+(H2O)x "H(Na+) K+(H2O)x "H(K+) Rb+(H2O)x "H(Rb+) Cs+(H2O)x "H(Cs+) 

0 0 292.2 0 232.1 0 193.2 0 161.5 
1 -100 192.2 -75 157.1 -66 127.2 -57 104.5 
2 -183 109.2 -142 90.1 -123 70.2 -110 51.5 
3 -249 43.2 -197 35.1 -174 19.2 -156 5.5 
4 -307 -14.8 -247 -14.9 -221 -27.8 -201 -39.5 
5 -359 -66.8 -292 -59.9 -265 -71.8 -242 -80.5 
6 -403 -110.8 -333 -100.9 -306 -112.8 -281 -119.5 
 
 
 
 
Table 8.2. Total Bond Dissociation of M+(ACN)x for M = Na, K, Rb, and Cs and the 
Enthalpy for the reaction  M+(ACN)x + ha18C6 ! M+(ha18C6) + xACN. 
x Na+(H2O)x "H(Na+) K+(H2O)x "H(K+) Rb+(H2O)x "H(Rb+) Cs+(H2O)x "H(Cs+) 

0 0 330.2 0 223.3 0 187.2 0 149.5 
1 -109 221.2 -102 121.3 -87 100.2 -80 69.5 
2 -211 119.2 -188 35.3 -161 26.2 -150 -0.5 
3 -297 33.2 -264 -40.7 -227 -39.8 -210 -60.5 
4 -359 -28.8 -321 -97.7 -279 -91.8 -261 -111.5 
5 -412 -81.8 -369 -145.7 -325 -137.8 -307 -157.5 
6 -452 -121.8 -409 -185.7 -364 -176.8 -346 -196.5 
 
 
 
 
Table 8.3. Total Bond Dissociation of M+(ACN)x for M = Na, K, Rb, and Cs and the 
Enthalpy for the reaction  M+(ACN)x + ta12C4 ! M+(ta12C4) + xACN. 
x Na+(H2O)x "H(Na+) K+(H2O)x "H(K+) Rb+(H2O)x "H(Rb+) Cs+(H2O)x "H(Cs+) 

0 0 285.1 0 178.3 0 149 0 133.1 
1 -109 176.1 -102 76.3 -87 62 -80 53.1 
2 -211 74.1 -188 -9.7 -161 -12 -150 -16.9 
3 -297 -11.9 -264 -85.7 -227 -78 -210 -76.9 
4 -359 -73.9 -321 -142.7 -279 -130 -261 -127.9 
5 -412 -126.9 -369 -190.7 -325 -176 -307 -173.9 
6 -452 -166.9 -409 -230.7 -364 -215 -346 -212.9 
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ABSTRACT 
NONOCOVALENT INETEACTIONS BETWEEN ALAKI METAL 

CATIONS AND AZA/THIA-CROWN ETHERS: MASS 
SPECTROMETRIC DISSOCAITAION TECNIQUES AND 

THEORETICAL STUDEIES 
by  

CALVIN A. AUSTIN 

August 2015 

Advisor: Dr. Matthew J. Allen 

Major: Chemistry (Analytical) 

Degree: Doctor of Philosophy 

Macrocyclic complexes have been useful in understanding many systems encountered 

in biology, along with having widespread use in analytical, pharmaceutical, and synthetic 

chemistry.  My goal was to provide a quantitative experimental and theoretical description of 

cation-aza-crown and thia-crown ether interactions with alkali metal cations.  Infrared 

multiple photon dissociation (IRMPD) action spectroscopy and energy-resolved collision-

induced dissociation (CID) techniques were used in conjunction with theoretical electronic 

structure calculations to characterize the structures, binding interactions, and stability of 

cation-aza-crown ether interactions. Quantum chemical calculations at several levels of 

theory were employed to characterize the structures and stabilities of the isolated cations and 

aza-crown and thia-crown ethers, as well as noncovalently bound complexes comprised of 

these species. Quantum chemical calculations were also used to generate linear IR spectra 

and provide theoretical bond dissociation energy (BDEs) for comparison to IRMPD action 

spectra and experimentally determined BDEs, respectively.  Guided ion beam tandem mass 

spectrometry techniques were used to characterize the energy dependence of the collision-

induced dissociation behavior of these cation-aza-crown ether complexes. The 

photodissociation experiments were carried out in a 4.7 T Fourier transform ion cyclotron 

resonance mass spectrometer (FT-ICR MS) coupled to a wavelength tunable free electron 

laser (FEL). The gas phase trend suggests that binding is determined by electrostatic 

interactions indicating the charge density of the cation is the major feature controlling 
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binding for the alkali metal cations complex macrocyclic ligand. The gas phase trend also 

suggests that N donor atoms are more selective for hard metal cations, whereas O donor 

atoms are slightly more selective for softer metal cations, and S donor atoms bind the alkali 

metal cation the weakest. Results here suggests that the nitrogen donor atoms macrocycles 

can selectivity and strongly bind the alkali metal cations in the proper environment similar to 

oxygen donor atoms macrocycles. 
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